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Overview

"Probably the most wide ranging and complete Linux device driver book I've read."
--Alan Cox, Linux Guru and Key Kernel Developer
"Very comprehensive and detailed, covering almost every single Linux device driver type."

--Theodore Ts'o, First Linux Kernel Developer in North America and Chief Platform Strategist of the Linux
Foundation

The Most Practical Guide to Writing Linux Device Drivers

Linux now offers an exceptionally robust environment for driver development: with today's kernels, what once
required years of development time can be accomplished in days. In this practical, example-driven book, one of
the world's most experienced Linux driver developers systematically demonstrates how to develop reliable Linux
drivers for virtually any device. Essential Linux Device Drivers is for any programmer with a working
knowledge of operating systems and C, including programmers who have never written drivers before.
Sreekrishnan Venkateswaran focuses on the essentials, bringing together all the concepts and techniques you
need, while avoiding topics that only matter in highly specialized situations. Venkateswaran begins by reviewing
the Linux 2.6 kernel capabilities that are most relevant to driver developers. He introduces simple device
classes; then turns to serial buses such as 12C and SPI; external buses such as PCMCIA, PCI, and USB; video,
audio, block, network, and wireless device drivers; user-space drivers; and drivers for embedded Linux—one of
today's fastest growing areas of Linux development. For each, Venkateswaran explains the technology, inspects
relevant kernel source files, and walks through developing a complete example.

= Addresses drivers discussed in no other book, including drivers for 12C, video, sound, PCMCIA, and different
types of flash memory

» Demystifies essential kernel services and facilities, including kernel threads and helper interfaces
= Teaches polling, asynchronous notification, and 1/0 control

= Introduces the Inter-Integrated Circuit Protocol for embedded Linux drivers

= Covers multimedia device drivers using the Linux-Video subsystem and Linux-Audio framework

= Shows how Linux implements support for wireless technologies such as Bluetooth, Infrared, WiFi, and cellular
networking

= Describes the entire driver development lifecycle, through debugging and maintenance

= Includes reference appendixes covering Linux assembly, BIOS calls, and Seq files
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Foreword

If you're holding this book, you may be asking yourself: Why "yet another" Linux device driver book? Aren't
there already a bunch of them?

The answer is: This book is a quantum leap ahead of the others.

First, it is up-to-date, covering recent 2.6 kernels. Second, and more important, this book is thorough. Most
device driver books just cover the topics described in standard Unix internals books or operating system books,
such as serial lines, disk drives, and filesystems, and, if you're lucky, the networking stack.

This book goes much further; it doesn't shy away from the hard stuff that you have to deal with on modern PC
and embedded hardware, such as PCMCIA, USB, 12C, video, audio, flash memory, wireless communications, and
so on. You name it, if the Linux kernel talks to it, then this book tells you about it.

No stone is left unturned; no dark corner is left unilluminated.

Furthermore, the author has earned his stripes: It's a thrill ride just to read his description of putting Linux on a
wristwatch in the late 1990s!

I'm pleased and excited to have this book as part of the Prentice Hall Open Source Software Development
Series. It is a shining example of the exciting things happening in the Open Source world. | hope that you will
find here what you need for your work on the kernel, and that you will enjoy the process, too!

Arnold Robbins
Series Editor



Preface

It was the late 1990s, and at IBM we were putting the Linux kernel on a wristwatch. The target device was tiny,
but the task was turning out to be tough. The Memory Technology Devices subsystem didn't exist in the kernel,
which meant that before a filesystem could start life on the watch's flash memory, we had to develop the
necessary storage driver from scratch. Interfacing the watch's touch screen with user applications was
complicated because the kernel's input event driver interface hadn't been conceived yet. Getting X Windows to
run on the watch's LCD wasn't easy because it didn't work well with frame buffer drivers. Of what use is a
waterproof Linux wristwatch if you can't stream stock quotes from your bathtub? Bluetooth integration with
Linux was several years away, and months were spent porting a proprietary Bluetooth stack to Internet-enable
the watch. Power management support was good enough only to squeeze a few hours of juice from the watch's
battery; hence we had work cut out on that front, too. Linux-Infrared was still unstable, so we had to coax the
stack before we could use an Infrared keyboard for data entry. And we had to compile the compiler and cross-
compile a compact application-set because there were no accepted distributions in the consumer electronics
space.

Fast forward to the present: The baby penguin has grown into a healthy teenager. What took thousands of lines
of code and a year in development back then can be accomplished in a few days with the current kernels. But to
become a versatile kernel engineer who can magically weave solutions, you need to understand the myriad
features and facilities that Linux offers today.

About the Book

Among the various subsystems residing in the kernel source tree, the drivers/ directory constitutes the single
largest chunk and is several times bigger than the others. With new and diverse technologies arriving in popular
form factors, the development of new device drivers in the kernel is accelerating steadily. The latest kernels
support more than 70 device driver families.

This book is about writing Linux device drivers. It covers the design and development of major device classes
supported by the kernel, including those | missed during my Linux-on-Watch days. The discussion of each driver
family starts by looking at the corresponding technology, moves on to develop a practical example, and ends by
looking at relevant kernel source files. Before foraying into the world of device drivers, however, this book
introduces you to the kernel and discusses the important features of 2.6 Linux, emphasizing those portions that
are of special interest to device driver writers.

Audience

This book is intended for the intermediate-level programmer eager to tweak the kernel to enable new devices.
You should have a working knowledge of operating system concepts. For example, you should know what a
system call is and why concurrency issues have to be factored in while writing kernel code. The book assumes
that you have downloaded Linux on your system, poked through the kernel sources, and at least skimmed
through some related documentation. And you should be pretty good in C.

Summary of Chapters

The first 4 chapters prepare you to digest the rest of the book. The next 16 chapters discuss drivers for different
device families. A chapter that describes device driver debugging techniques comes next. The penultimate
chapter provides perspective on maintenance and delivery. We shut down by walking through a checklist that
summarizes how to set forth on your way to Linux-enablement when you get hold of a new device.

Chapter 1, "Introduction," starts our tryst with Linux. It hurries you through downloading the kernel sources,
making trivial code changes, and building a bootable kernel image.



Chapter 2, "A Peek Inside the Kernel," takes a brisk look into the innards of the Linux kernel and teaches you
some must-know kernel concepts. It first takes you through the boot process and then describes kernel services
particularly relevant to driver development, such as kernel timers, concurrency management, and memory
allocation.

Chapter 3, "Kernel Facilities," examines several kernel services that are useful components in the toolbox of
driver developers. The chapter starts by looking at kernel threads, which is a way to implement background
tasks inside the kernel. It then moves on to helper interfaces such as linked lists, work queues, completion
functions, and notifier chains. These helper facilities simplify your code, weed out redundancies from the kernel,
and help long-term maintenance.

Chapter 4, "Laying the Groundwork," builds the foundation for mastering the art of writing Linux device drivers.
It introduces devices and drivers by giving you a bird's-eye view of the architecture of a typical PC-compatible
system and an embedded device. It then looks at basic driver concepts such as interrupt handling and the
kernel's device model.

Chapter 5, "Character Drivers," looks at the architecture of character device drivers. Several concepts
introduced in this chapter, such as polling, asynchronous notification, and 1/0 control, are relevant to
subsequent chapters, too, because many device classes discussed in the rest of the book are "super" character
devices.

Chapter 6, "Serial Drivers," explains the kernel layer that handles serial devices.

Chapter 7, "Input Drivers," discusses the kernel's input subsystem that is responsible for servicing devices such
as keyboards, mice, and touch-screen controllers.

Chapter 8, "The Inter-Integrated Circuit Protocol," dissects drivers for devices such as EEPROMs that are
connected to a system's 12C bus or SMBus. This chapter also looks at other serial interfaces such as SPI bus and
1-wire bus.

Chapter 9, "PCMCIA and Compact Flash," delves into the PCMCIA subsystem. It teaches you to write drivers for
devices having a PCMCIA or Compact Flash form factor.

Chapter 10, "Peripheral Component Interconnect," looks at kernel support for PCI and its derivatives.

Chapter 11, "Universal Serial Bus," explores USB architecture and explains how you can use the services of the
Linux-USB subsystem to write drivers for USB devices.

Chapter 12, "Video Drivers," examines the Linux-Video subsystem. It finds out the advantages offered by the
frame buffer abstraction and teaches you to write frame buffer drivers.

Chapter 13, "Audio Drivers," describes the Linux-Audio framework and explains how to implement audio drivers.

Chapter 14, "Block Drivers," focuses on drivers for storage devices such as hard disks. In this chapter, you also
learn about the different 1/0 schedulers supported by the Linux-Block subsystem.

Chapter 15, "Network Interface Cards," is devoted to network device drivers. You learn about kernel networking
data structures and how to interface network drivers with protocol layers.

Chapter 16, "Linux Without Wires," looks at driving different wireless technologies such as Bluetooth, Infrared,
WiFi, and cellular communication.

Chapter 17, "Memory Technology Devices," discusses flash memory enablement on embedded devices. The
chapter ends by examining drivers for the Firmware Hub found on PC systems.

Chapter 18, "Embedding Linux," steps into the world of embedded Linux. It takes you through the main
firmware components of an embedded solution such as bootloader, kernel, and device drivers. Given the soaring
popularity of Linux in the embedded space, it's more likely that you will use the device driver skills that you



acquire from this book to enable embedded systems.

Chapter 19, "Drivers in User Space," looks at driving different types of devices from user space. Some device
drivers, especially ones that are heavy on policy and light on performance requirements, are better off residing
in user land. This chapter also explains how the Linux process scheduler affects the response times of user
mode drivers.

Chapter 20, "More Devices and Drivers," takes a tour of a potpourri of driver families not covered thus far, such
as Error Detection And Correction (EDAC), FireWire, and ACPI.

Chapter 21, "Debugging Device Drivers," teaches about different types of debuggers that you can use to debug
kernel code. In this chapter, you also learn to use trace tools, kernel probes, crash-dump, and profilers. When
you develop a driver, be armed with the driver debugging skills that you learn in this chapter.

Chapter 22, "Maintenance and Delivery," provides perspective on the software development life cycle.

Chapter 23, "Shutting Down," takes you through a checklist of work items when you embark on Linux-enabling
a new device. The book ends by pondering What next?

Device drivers sometimes need to implement code snippets in assembly, so Appendix A, "Linux Assembly,"
takes a look at the different facets of assembly programming on Linux. Some device drivers on x86-based
systems depend directly or indirectly on the BIOS, so Appendix B, "Linux and the BIOS," teaches you how Linux
interacts with the BIOS. Appendix C, "Seq Files," describes seq files, a kernel helper interface introduced in the
2.6 kernel that device drivers can use to monitor and trend data points.

The book is generally organized according to device and bus complexity, coupled with practical reasons of
dependencies between chapters. So, we start off with basic device classes such as character, serial, and input.
Next, we look at simple serial buses such as 12C and SMBus. External 1/0 buses such as PCMCIA, PCI, and USB
follow. Video, audio, block, and network devices usually interface with the processor via these 1/0 buses, so we
look at them soon after. The next portions of the book are oriented toward embedded Linux and cover
technologies such as wireless networking and flash memory. User-space drivers are discussed toward the end of
the book.

Kernel Version

This book is generally up to date as of the 2.6.23/2.6.24 kernel versions. Most code listings in this book have
been tested on a 2.6.23 kernel. If you are using a later version, look at Linux websites such as Iwn.net to learn
about the kernel changes since 2.6.23/24.

Book Website

I've set up a website at elinuxdd.com to provide updates, errata, and other information related to this book.

Conventions Used

Source code, function names, and shell commands are written | i ke t hi s. The shell prompt used is bash>.
Filename are written in italics, like this. Italics are also used to introduce new terms.

Some chapters modify original kernel source files while implementing code examples. To clearly point out the
changes, newly inserted code lines are prefixed with +, and any deleted code lines with - .

Sometimes, for simplicity, the book uses generic references. So if the text points you to the arch/your-arch/
directory, it should be translated, for example, to arch/x86/ if you are compiling the kernel for the x86
architecture. Similarly, any mention of the include/asm-your-arch/ directory should be read as include/asm-
arm/ if you are, for instance, building the kernel for the ARM architecture. The * symbol and X are occasionally
used as wildcard characters in filenames. So, if a chapter asks you to look at include/linux/time*.h, look at the



header files, time.h, timer.h, times.h, and timex.h residing in the include/linux/ directory. If a section talks
about /dev/input/eventX or /sys/devices/platform/i8042/serioX/, X is the interface number that the kernel
assigns to your device in the context of your system configuration.

The == symbol is sometimes inserted between command or kernel output to attach explanations.

Simple regular expressions are occasionally used to compactly list function prototypes. For example, the section
"Direct Memory Access" in Chapter 10, "Peripheral Component Interconnect,"” refers to

pci _[ map| unmap| dna_sync] _si ngl e() instead of explicitly citing pci _map_si ngl e(), pci _umap_si ngl e(), and
pci _dma_sync_singl e().

Several chapters refer you to user-space configuration files. For example, the section that describes the boot
process opens /etc/rc.sysinit, and the chapter that discusses Bluetooth refers to /etc/bluetooth/pin. The exact
names and locations of such files might, however, vary according to the Linux distribution you use.
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Linux lures. It has the enticing aroma of an internationalist project where people of all
nationalities, creed, and gender collaborate. Free availability of source code and a well-understood
UNIX-like application programming environment have contributed to its runaway success. High-
quality support from experts available instantly over the Internet at no charge has also played a
major role in stitching together a huge Linux community.

Developers get incredibly excited about working on technologies where they have access to all the
sources because that lets them create innovative solutions. You can, for example, hack the
sources and customize Linux to boot in a few seconds on your device, a feat that is hard to achieve
with a proprietary operating system.

Evolution

Linux started as the hobby of a Finnish college student named Linus Torvalds in 1991, but quickly metamorphed
into an advanced operating system popular all over the planet. From its first release for the Intel 386 processor,
the kernel has gradually grown in complexity to support numerous architectures, multiprocessor hardware, and
high-performance clusters. The full list of supported CPUs is long, but some of the major supported
architectures are x86, 1A64, ARM, PowerPC, Alpha, s390, MIPS, and SPARC. Linux has been ported to hundreds
of hardware platforms built around these processors. The kernel is continuously getting better, and the
evolution is progressing at a frantic pace.

Although it started life as a desktop-operating system, Linux has penetrated the embedded and enterprise
worlds and is touching our daily lives. When you push the buttons on your handheld, flip your remote to the
weather channel, or visit the hospital for a physical checkup, it's increasingly likely that some Linux code is
being set into motion to come to your service. Linux's free availability is helping its evolution as much as its
technical superiority. Whether it's an initiative to develop sub-$100 computers to enable the world's poor or
pricing pressure in the consumer electronics space, Linux is today's operating system of choice, because
proprietary operating systems sometimes cost more than the desired price of the computers themselves.
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The GNU Copyleft

The GNU project (GNU is a recursive acronym for GNU's Not UNIX) predates Linux and was launched to develop
a free UNIX-like operating system. A complete GNU operating system is powered by the Linux kernel but also
contains components such as libraries, compilers, and utilities. A Linux-based computer is hence more
accurately a GNU/Linux system. All components of a GNU/Linux system are built using free software.

There are different flavors of free software. One such flavor is called public domain software. Software released
under the public domain is not copyrighted, and no restrictions are imposed on its usage. You can use it for
free, make changes to it, and even restrict the distribution of your modified sources. As you can see, the "no
restrictions” clause introduces the power to introduce restrictions downstream.

The Free Software Foundation, the primary sponsor of the GNU project, created the GNU Public License (GPL),
also called a copyleft, to prevent the possibility of middlemen transforming free software into proprietary
software. Those who modify copylefted software are required to also copyleft their derived work. The Linux
kernel and most components of a GNU system such as the GNU Compiler Collection (GCC) are released under
the GPL. So, if you make modifications to the kernel, you have to return your changes back to the community.
Essentially, you have to pass on the rights vested on you by the copyleft.

The Linux kernel is licensed under GPL version 2. There is an ongoing debate in the kernel community
about whether the kernel should move to GPLv3, the latest version of the GPL. The current tide seems to
be against relicensing the kernel to adopt GPLv3.

Linux applications that invoke system calls to access kernel services are not considered derived work, however,
and won't be restricted by the GPL. Similarly, libraries are covered by a less-stringent license called the GNU
Lesser General Public License (LGPL). Proprietary software is permitted to dynamically link with libraries
released under the LGPL.



Kernel.org

The primary repository of Linux kernel sources is www.kernel.org. The website contains all released kernel
versions. A number of websites around the world mirror the contents of kernel.org.

In addition to released kernels, kernel.org also hosts a set of patches maintained by front-line developers that
serve as a test bed for future stable releases. A patch is a text file containing source code differences between a
development tree and the original snapshot from which the developer started work. A popular patch-set
available at kernel.org is the - nmpatch periodically released by Andrew Morton, the lead maintainer of the Linux
kernel. You will find experimental features in the - mm patch that have not yet made it to the mainline source
tree. Another patch-set periodically released on kernel.org is the —rt (real time) patch maintained by Ingo
Molnar. Several —-rt features have been merged into the mainline kernel.



Mailing Lists and Forums

The Linux Kernel Mailing List (LKML) is the forum where developers debate on design issues and decide on
future features. You can find a real-time feed of the mailing list at www.lkml.org. The kernel now contains
several million lines of code contributed by thousands of developers all over the world. LKML acts as the thread
that ties all these developers together.

LKML is not for general Linux questions. The basic rule is to post only questions pertaining to kernel
development that have not been previously answered in the mailing list or in popularly available documentation.
If the C compiler crashed while compiling your Linux application, you should post that question elsewhere.

Discussions in some LKML threads are more interesting than a New York Times bestseller. Spend a few hours
browsing LKML archives to get an insight into the philosophy behind the Linux kernel.

Most subprojects in the kernel have their own specific mailing lists. So, subscribe to the linux-mtd mailing list if
you are developing a Linux flash memory driver or initiate a thread in the linux-usb-devel mailing list if you
think you have found a bug in the USB mass storage driver. We refer to relevant mailing lists at the end of
several chapters.

In various forums, kernel experts from around the globe gather under one roof. The Linux Symposium held
annually at Ottawa, Canada, is one such conference. Others include the Linux Kongress that takes place in
Germany and linux.conf.au organized in Australia. There are also numerous commercial Linux forums where
industry leaders meet and share their insights. An example is the LinuxWorld Conference and Expo held yearly
in North America.

For the latest news from the developer community, check out http://lwn.net/. If you want to glean the
highlights of the latest kernel release without many cryptic references to kernel internals, this might be a good
place to look. You can find another web community that discusses current kernel topics at
http://kerneltrap.org/.

With every major kernel release, you will see sweeping improvements, be it kernel preemption, lock-free
readers, new services to offload work from interrupt handlers, or support for new architectures. Stay in constant
touch with the mailing lists, websites, and forums, to keep yourself in the thick of things.


http://lwn.net/
http://kerneltrap.org/

Linux Distributions

Because a GNU/Linux system consists of numerous utilities, programs, libraries, and tools, in addition to the
kernel, it's a daunting task to acquire and correctly install all the pieces. Linux distributions come to the rescue
by classifying the components and bundling them into packages in an orderly fashion. A typical distribution
contains thousands of ready-made packages. You need not worry about downloading the right program versions
or fixing dependency issues.

Because packaging is a way to make a lot of money within the ambit of the GNU license, there are several Linux
distributions in the market today. Distributions such as Red Hat/Fedora, Debian, SuSE, Slackware, Gentoo,
Ubuntu, and Mandriva are primarily meant for the desktop user. MontaVista, TimeSys, and Wind River
distributions are geared toward embedded development. Embedded Linux distributions also include a
dynamically configurable compact application-set to tailor the system's footprint to suit resource constraints.

In addition to packaging, distributions offer value-adds for kernel development. Many projects start
development based on kernels supplied by a distribution rather than a kernel released officially at kernel.org.
Reasons for this include the following:

e Linux distributions that comply with standards relevant to your device's industry domain are often better
starting points for development. Special Interest Groups (SIGs) have taken shape to promote Linux in
various domains. The Consumer Electronics Linux Forum (CELF), hosted at www.celinuxforum.org, focuses
on using Linux on consumer electronics devices. The CELF specification defines the support level of
features such as scalable footprint, fast boot, execute in place, and power management, desirable on
consumer electronics devices. The efforts of the Open Source Development Lab (OSDL), hosted at
www.osdl.org, centers on characteristics distinct to carrier-grade devices. OSDL's Carrier Grade Linux
(CGL) specification codifies value additions such as reliability, high availability, runtime patching, and
enhanced error recovery, important in the telecom space.

e The mainline kernel might not include full support for the embedded controller of your choice even if the
controller is built around a kernel-supported CPU core. A Linux distribution might offer device drivers for
all the peripheral modules inside the controller, however.

e Debugging tools that you plan to use during kernel development may not be part of the mainline kernel.
For example, the kernel has no built-in debugger support. If you want to use a kernel debugger during
development, you have to separately download and apply the corresponding patches. You have to endure
more hassles if tested patches are not readily available for your kernel version. Distributions prepackage
many useful debugging features, so you can start using them right away.

e Some distributions provide legal indemnification so that your company won't be liable for lawsuits arising
out of kernel bugs.

e Distributions tend to do a lot of testing on the kernels they release.[1]

[1] Because this necessitates freezing the kernel to a version that is not the latest, distribution-supplied kernels often contain back-
ports of some features released in later official kernels.

¢ You can purchase service and support packages from distribution vendors for kernels that they supply.






Looking at the Sources

Before we start wetting our toes in the kernel, let's download the sources, learn to apply a patch, and look at
the layout of the code tree.

First, go to www.kernel.org and get the latest stable tree. The sources are archived as tar files compressed in
both gzip (.gz) and bzip2 (.bz2) formats. Obtain the source files by uncompressing and untarring the zipped tar
ball. In the following commands, replace X.Y.Z with the latest kernel version, such as 2.6.23:

bash> cd /usr/src
bash> wget www. ker nel . or g/ pub/linux/kernel /vX Y/linux-X Y.Z tar.bz2

bash> tar xvfj linux-XY.Z tar.bz2

Now that you have the unpacked source tree in /usr/src/linux-X.Y.Z/ on your system, let's enable some
experimental test features into the tree by getting a corresponding - nm (Andrew Morton) patch:

Code View:

bash> cd /usr/src

bash> wget www. ker nel . or g/ pub/ i nux/ ker nel / peopl e/ akpni pat ches/ X. Y/ X. Y. ZI X. Y. Z-
m2/ X. Y. Z- m2. bz2

Apply the patch:

bash> cd /usr/src/linux-XY.Z
bash> bzip2 -dc ../ X Y.Z-mmR.bz2 | patch -pl

The - dc option asks bzip2 to uncompress the specified files to standard output. This is piped to the patch utility,
which applies changes to each modified file in the code tree.

If you need to apply multiple patches, do so in the right sequence. To generate a kernel enabled with the
X. Y. Z- aa- bb patch, first download the full X. Y. Z kernel sources, apply the X. Y. Z- aa patch, and then apply the
X. Y. Z- aa- bb patch.



Patch Submission
To generate a kernel patch out of your changes, use the di ff command:

Code View:
bash> di ff —Nur /path/to/original/kernel /path/to/your/kernel > changes. patch

Note that the original kernel precedes the changed version in the di f f -ing order. As per 2.6 kernel
patch submission conventions, you also need to add a line at the end of the patch that says this:

Si gned- of f-by: Name <Email >

With this, you certify that you wrote the code yourself and that you have the right to contribute it.
You are now all set to post your patch to the relevant mailing list, such as LKML.

Look at Documentation/SubmittingPatches for a guide on creating patches for submission and at
Documentation/applying-patches.txt for a tutorial on applying patches.

Now that your patched /usr/src/linux-X.Y.Z/ tree is ready for use, let's take a moment to observe how the
source layout is organized. Go to the root of the source tree and list its contents. The directories branching out
from the root of the code tree are as follows:

1. arch. This directory contains architecture-specific files. You will see separate subdirectories under arch/
for processors such as ARM, Motorola 68K, s390, MIPS, Alpha, SPARC, and 1A64.

2. block. This primarily contains the implementation of 1/0 scheduling algorithms for block storage devices.

3. crypto. This directory implements cipher operations and the cryptographic API, used, for example, by
some WiFi device drivers for implementing encryption algorithms.

4. Documentation. This directory has brief descriptions of various kernel subsystems. This can be your first
stop to dig for answers to kernel-related queries.

5. drivers. Device drivers for numerous device classes and peripheral controllers reside in this directory. The
device classes include character, serial, Inter-Integrated Circuit (I2C), Personal Computer Memory Card
International Association (PCMCIA), Peripheral Component Interconnect (PCI), Universal Serial Bus (USB),
video, audio, block, Integrated Drive Electronics (IDE), Small Computer System Interface (SCSI), CD-
ROM, network adapters, Asynchronous Transfer Mode (ATM), Bluetooth, and Memory Technology Devices
(MTD). Each of these classes live in a separate subdirectory under drivers/. You will, for instance, find
PCMCIA driver sources inside the drivers/pcmcia/ directory and MTD drivers inside the drivers/mtd/
directory. The subdirectories present under drivers/ constitute the primary subjects for this book.



6. fs. This directory contains the implementation of filesystems such as EXT3, EXT4, reiserfs, FAT, VFAT,
sysfs, procfs, isofs, JFFS2, XFS, NTFS, and NFS.

7. include. Kernel header files live here. Subdirectories prefixed with asm contain headers specific to the
particular architecture. So the directory include/asm-x86/ contains header files pertaining to the x86
architecture, whereas include/asm-arm/ holds headers for the ARM architecture.

8. init. This directory contains high-level initialization and startup code.

9. ipc. This contains support for Inter-Process Communication (IPC) mechanisms such as message queues,
semaphores, and shared memory.

10. kernel. The architecture-independent portions of the base kernel can be found here.

11. lib. Library routines such as generic kernel object (kobject) handlers and Cyclic Redundancy Code (CRC)
computation functions stay here.

12. mm. The memory management implementation lives here.

13. net. Networking protocols reside under this directory. Protocols implemented include Internet Protocol
version 4 (IPv4), IPv6, Internetwork Protocol eXchange (IPX), Bluetooth, ATM, Infrared, Link Access
Procedure Balanced (LAPB), and Logical Link Control (LLC).

14. scripts. Scripts used during kernel build reside here.

15. security. This directory contains the framework for security.

16. sound. The Linux audio subsystem is based in this directory.

17. usr. This currently contains the initramfs implementation.

Unified x86 Architecture Tree

Starting with the 2.6.24 kernel release, the i386 and the x86_64 (the 64-bit cousin of the 32-bit
i386) architecture-specific trees have been unified into a common arch/x86/ directory. If you are
using a pre-2.6.24 kernel, replace references to arch/x86/ in this book with arch/i386/. Similarly,
change any occurrence of include/asm-x86/ to include/asm-i386/. Some filenames within these
directories have also changed.

Wading through these large directories in search of symbols and other code elements can be a tough task. The
tools in Table 1.1 are worthy aids as you navigate the kernel source tree.



Tool

Table 1.1. Tools That Aid Source Tree Navigation

Description

Ixr

cscope

ctags/etags

Utilities

GCC options

The Linux cross-referencer, Ixr, downloadable from
http://Ixr.sourceforge.net/, lets you traverse the kernel tree using
a web browser by providing hyperlinks to connect kernel symbols
with their definitions and uses.

cscope, hosted at http://cscope.sourceforge.net/, builds a symbolic
database from all files in a source tree, so you can quickly locate
declarations, definitions, regular expressions, and more. Cscope
might not be as versatile as Ixr, but it gives you the flexibility of
using the search features of your favorite text editor rather than a
browser. From the root of your kernel tree, issue the cscope - gkRv
command to build the cross-reference database. The - g option
generates more indexing information, so searches become
noticeably faster at the expense of extra initial startup time. The —k
option requests cscope to tune its behavior to suit kernel sources,

- Rasks for recursive subdirectory traversal, and —v appeals for
verbose messages. You can obtain the detailed invocation syntax
from the man page.

The ctags utility, downloadable from http://ctags.sourceforge.net/,
generates cross-reference tags for many languages, so you can
locate symbol and function definitions in a source tree from within
an editor such as vi. Do neke t ags from the root of your kernel
tree to ctag all source files. The etags utility generates similar
indexing information understood by the emacs editor. Issue nake
TAGS to etag your kernel source files.

Tools such as grep, find, sdiff, strace, od, dd, make, tar, file, and
objdump.

You may ask GCC to generate preprocessed source code using the
- E option. Preprocessed code contains header file expansions and
reduces the need to hop-skip through nested include files to
expand multiple levels of macros. Here is a usage example to
preprocess drivers/char/mydrv.c and produce expanded output in
mydrv.i:

bash> gcc -E drivers/char/nydrv.c -D__KERNEL__ -1include
-linclude/ asm x86/ mach-default > nydrv.i

The include paths specified using the -1 option depend on the
header files included by your code.

GCC generates assembly listings if you use the - S option. To
generate an assembly listing in mydrv.s for drivers/char/mydrv.c,
do this:

bash> gcc -S drivers/char/nydrv.c -D__KERNEL__ -1include
-l anot her/i ncl ude/ path


http://lxr.sourceforge.net/
http://cscope.sourceforge.net/
http://ctags.sourceforge.net/

Building the Kernel

Now that you have an idea of the source tree layout, let's make a trivial code change, compile, and get it
running. Go to the top-level init/ directory and venture to make a small code change to the initialization file
main.c. Add a print statement to the beginning of the function, start _kernel (), declaring your love for polar
bears:

asm inkage void __init start_kernel (void)

{

char *command_| i ne;
extern struct kernel _param __start___ parani],

__stop___parani];
+ printk("Penguins are cute, but so are polar bears\n");
[* o0 %]

rest_init();

You're now ready to kick off the build process. Go to the root of the source tree and start with a clean slate:
bash> cd /usr/src/linux-XY.2z

bash> make cl ean

Configure the kernel. This is when you pick and choose the pieces that form part of the operating system. You
may specify whether each desired component is to be statically or dynamically linked to the kernel:

bash> make nenuconfig

nmenuconfi g is a text interface to the kernel configuration menu. Use nmake xconfi g to get a graphical interface.
The configuration information that you choose is saved in a file named .config in the root of your source tree. If
you don't want to weave the configuration from scratch, use the file arch/your-arch/defconfig (or arch/your-
arch/configs/your-machine_defconfig if there are several supported platforms for your architecture) as the

starting point. So, if you are compiling the kernel for the 32-bit x86 architecture, do this:

bash> cp arch/x86/ configs/i 386_defconfig .config

Compile the kernel and generate a compressed boot image:

bash> nake bzl mage

The kernel image is produced in arch/x86/boot/bzlmage. Update your boot partition:

bash> cp arch/ x86/ boot/ bzl mage /boot/vm i nuz

You might need to alert your bootloader about the arrival of the new boot image. If you are using the GRUB
bootloader, it figures this out automatically; but if you are using LILO, raise a flag:



bash> /sbin/lilo
Added |inux *

Finally, restart the machine and boot in to your new kernel:

bash> reboot

The first message in the boot sequence launches your campaign for polar bears.



Loadable Modules

Because Linux runs on a variety of architectures and supports zillions of 1/0 devices, it's not feasible to
permanently compile support for all possible devices into the base kernel. Distributions generally package a
minimal kernel image and supply the rest of the functionalities in the form of kernel modules. During runtime,
the necessary modules are dynamically loaded on demand.

To generate modules, go to the root of your kernel source tree and build:

bash> cd /usr/src/linux-XY.Z
bash> nake nodul es

To install the produced modules, do this:

bash> nake nodul es_install

This creates a kernel source directory structure under /lib/modules/X.Y.Z/kernel/ and populates it with loadable
module objects. This also invokes the depmod utility that generates module dependencies in the file
/lib/modules/X.Y.Z/modules.dep.

The following utilities are available to manipulate modules: insmod, rmmod, Ismod, modprobe, modinfo, and
depmod. The first two are utilities to insert and remove modules, whereas Ismod lists the modules that are
currently loaded. modprobe is a cleverer version of insmod that also inserts dependent modules after examining
the contents of /lib/modules/X.Y.Z/modules.dep. For example, assume that you need to mount a Virtual File
AIIocati[o]n Table (VFAT) partition present on a USB pen drive. Use modprobe to load the VFAT filesystem
driver:[2

[2] This example assumes that the module is not autoloaded by the kernel. If you enable Automatic Kernel Module Loading (CONFI G_KMOD)
during configuration, the kernel automatically runs modprobe with the appropriate arguments when it detects missing subsystems. You'll learn
about module autoloading in Chapter 4, "Laying the Groundwork."

bash> nodprobe vf at
bash> | snod

Modul e Si ze Used by

vf at 14208 0

f at 49052 1 vfat

nl s_base 9728 2 vfat, fat

As you see in the Ismod output, modprobe inserts three modules rather than one. modprobe first figures out
that it has to insert /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko. But when it peeks into the dependency file
/lib/modules/X.Y.Z/modules.dep, it finds the following line and realizes that it has to load two other dependent
modules first:

/1i b/ modul es/ X. Y. Z/ kernel / fs/vfat/vfat.ko:
/1ib/ modul es/ X. Y. Z/ kernel /fs/fat/fat.ko
/1'i b/ modul es/ X. Y. Z/ kernel / fs/ nl s/ nl s_base. ko

It then proceeds to load fat.ko and nls_base.ko before attempting to insert vfat.ko, thus automatically loading
all the modules you need to mount your VFAT partition.



Use the modinfo utility to extract verbose information about the modules you just loaded:

bash> nodi nfo vfat

fil enane: /1iblmodul es/ X. Y. Z/ kernel / fs/vfat/vfat. ko
li cense: GPL

description: VFAT fil esystem support

depends: fat, nls_base

To compile a kernel driver as a module, toggle the corresponding menu choice button to <M> while configuring
the kernel. Most of the device driver examples in this book are implemented as kernel modules. To build a
module mymodule.ko from its source file mymodule.c, create a one-line Makefile and execute it as follows:

bash> cd / pat h/t o/ nodul e- sour ce/
bash> echo "obj-m += nynodul e. ko" > Makefile
bash> nake —-C /path/to/ kernel -sources/ M pwd" nodul es
nmake: Entering directory '/path/to/kernel-sources
Bui | di ng nodul es, stage 2.
MODPOST
CC / pat h/t o/ nodul e- sour ces/ nynodul e. nod. o
LD [M [/ path/to/ modul e- sour ces/ mynodul e. ko
make: Leaving directory '/path/to/kernel-sources
bash> i nsnod ./ nynodul e. ko

Kernel modules render the kernel footprint smaller and the develop-build-test cycle shorter. You only need to
recompile the particular module and reinsert it to effect a change. We look at module debugging techniques in
Chapter 21, "Debugging Device Drivers."

There are also some downsides if you choose to design your driver as a kernel module. Unlike built-in drivers,
modules cannot reserve resources during boot time, when success is more or less guaranteed.



Before Starting

Linux has trekked many a terrain and is now state of the art, so you can use it as a vehicle to understand
operating system concepts, processor architectures, and even industry domains. When you learn a technique
used by a device driver subsystem, look one level deeper and probe the underlying reasons behind that design
choice.

Wherever not explicitly stated, the text assumes the 32-bit x86 architecture. The book is, however, mindful of
the fact that you are more likely to write device drivers for embedded devices than for conventional PC-
compatible systems. The chapter on serial drivers, for example, examines two devices: a touch controller on a
PC derivative and a UART on a cell phone. Or the chapter on I12C device drivers looks at an EEPROM on a PC
system and a Real Time Clock on an embedded device. The book also teaches you about the core infrastructure
that the kernel provides for most driver classes, which hides architecture dependencies from device drivers.

Device driver debugging techniques are discussed near the end of the book in Chapter 21, so you might find it
worthwhile to forward to that chapter as you develop drivers while reading the book.

This book is based on the 2.6 kernel, which has substantial changes across the board from 2.4, touching all
major subsystems. Hopefully, you have installed a 2.6-based Linux on your system by now and started
experimenting with the kernel sources. Each chapter takes the liberty of profusely pointing you to relevant
kernel source files for two main reasons:

1. Because each driver subsystem in the kernel is tens of thousands of lines long, it's only possible to take a
relatively simplistic view in a book. Looking at real drivers in the sources along with the example code in
this book will give you the bigger picture.

2. Before developing a driver, it's a good idea to zero in on an existing driver in the drivers/ directory that is
similar to your requirement and make that your starting point.

So, to derive maximum benefit from this book, familiarize yourself with the kernel by frequently browsing the
source tree and staring hard at the code. And in tandem with your code explorations, follow the goings-on in the
kernel mailing list.



Chapter 2. A Peek Inside the Kernel
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Before we start our journey into the mystical world of Linux device drivers, let's familiarize
ourselves with some basic kernel concepts by looking at several kernel regions through the lens of
a driver developer. We learn about kernel timers, synchronization mechanisms, and memory
allocation. But let's start our expedition by getting a view from the top; let's skim through boot
messages emitted by the kernel and hit the breaks whenever something looks interesting.

Booting Up

Figure 2.1 shows the Linux boot sequence on an x86-based computer. Linux boot on x86-based hardware is set
into motion when the BIOS loads the Master Boot Record (MBR) from the boot device. Code resident in the MBR
looks at the partition table and reads a Linux bootloader such as GRUB, LILO, or SYSLINUX from the active



partition. The final stage of the bootloader loads the compressed kernel image and passes control to it. The
kernel uncompresses itself and turns on the ignition.

Figure 2.1. Linux boot sequence on x86-based hardware.
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Bootloader (GRUB/LILOY...)
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The init Process

User Processes and Daemons

x86-based processors have two modes of operation, real mode and protected mode. In real mode, you can
access only the first 1MB of memory, that too without any protection. Protected mode is sophisticated and lets
you tap into many advanced features of the processor such as paging. The CPU has to pass through real mode
en route to protected mode. This road is a one-way street, however. You can't switch back to real mode from
protected mode.

The first-level kernel initializations are done in real mode assembly. Subsequent startup is performed in
protected mode by the function start _kernel () defined in init/main.c, the source file you modified in the
previous chapter. st art _kernel () begins by initializing the CPU subsystem. Memory and process management
are put in place soon after. Peripheral buses and 1/0 devices are started next. As the last step in the boot
sequence, the init program, the parent of all Linux processes, is invoked. Init executes user-space scripts that
start necessary kernel services. It finally spawns terminals on consoles and displays the login prompt.

Each following section header is a message from Figure 2.2 generated during boot progression on an x86-based



laptop. The semantics and the messages may change if you are booting the kernel on other architectures. If
some explanations in this section sound rather cryptic, don't worry; the intent here is only to give you a picture
from 100 feet above and to let you savor a first taste of the kernel's flavor. Many concepts mentioned here in
passing are covered in depth later on.

Figure 2.2. Kernel boot messages.

Code View:
Li nux version 2.6.23.1y (root @ocal host. | ocal domain) (gcc version 4.1.1 20061011 (Red
Hat 4.1.1-30)) #7 SMP PREEMPT Thu Nov 1 11:39:30 | ST 2007
Bl OS- provi ded physi cal RAM nap:
Bl OS- €820: 0000000000000000 - 000000000009f 000 (usabl e)
Bl OS- €820: 000000000009f 000 - 00000000000a0000 (reserved)
758MB LOANVEM avai | abl e.
Kernel command |line: ro root=/dev/hdal
Consol e: col our VGA+ 80x25
Calibrating delay using tiner specific routine.. 1197.46 BogoM PS (| pj =2394935)

CPU. L1 | cache: 32K, L1 D cache: 32K
CPU. L2 cache: 1024K

Checking "hit' instruction... OK
Setting up standard PCl resources
NET: Regi stered protocol famly 2
I P route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP established hash table entries: 131072 (order: 9, 2097152 bytes)

checking if image is initranfs... it is
Freeing initrd nenory: 387k freed

i o schedul er noop registered
i o schedul er anticipatory registered (default)

00: 0a: ttySO at /O 0x3f8 (irqg = 4) is a NS16550A
UniformMilti-PlatformE-IDE driver Revision: 7.00al pha2

i de: Assum ng 33MHz system bus speed for Pl O npdes; override with idebus=xx
I CH4: IDE controller at PCl slot 0000:00:1f.1

Probing IDE interface ideO...

hda: HTS541010G9AT00, ATA DI SK drive

hdc: HL- DT- STCD- RW DVD DRI VE GCC- 4241N, ATAPI CD/ DVD-ROM drive

serio: 8042 KBD port at 0x60,0x64 irq 1
m ce: PS/ 2 nouse device common for all mce

Synaptics Touchpad, nodel: 1, fw 5.9, id: Ox2c6abl, caps: 0x884793/0x0
agpgart: Detected an Intel 855GM Chi pset.
Intel (R) PRO 1000 Network Driver - version 7.3.20-k2

ehci _hcd 0000: 00: 1d. 7: EHCI Host Controller




Yenta: CardBus bridge found at 0000: 02: 00. 0 [ 1014: 0560]
Non-vol atile nmenory driver vl1.2

kjournald starting. Commit interval 5 seconds

EXT3 FS on hda2, internal journa

EXT3-fs: nounted filesystemw th ordered data node.

INI'T: version 2.85 booting

BI1OS-Provided Physical RAM Map

The kernel assembles the system memory map from the BIOS, and this is one of the first boot messages you
will see:

Bl OS- provi ded physi cal RAM map:
Bl OS- €820: 0000000000000000 - 000000000009f 000 (usabl e)

Bl OS- e820: 00000000f f 800000 - 0000000100000000 (reserved)

Real mode initialization code uses the BIOS i nt 0x15 service with function number 0xe820(hence the string

Bl OS- €820 in the preceding message) to obtain the system memory map. The memory map indicates reserved
and usable memory ranges, which is subsequently used by the kernel to create its free memory pool. We
discuss more on the BIOS-supplied memory map in the section "Real Mode Calls" in Appendix B, "Linux and the
BIOS."

758MB LOWMEM Available

The normally addressable kernel memory region (< 896MB) is called low memory. The kernel memory allocator,
kmal | oc() , returns memory from this region. Memory beyond 896MB (called high memory) can be accessed
only using special mappings.

During boot, the kernel calculates and displays the total pages present in these memory zones. We take a
deeper look at memory zones later in this chapter.

Kernel Command Line: ro root=/dev/hdal

Linux bootloaders usually pass a command line to the kernel. Arguments in the command line are similar to the
argv[] list passed to the nmai n() function in C programs, except that they are passed to the kernel instead. You
may add command-line arguments to the bootloader configuration file or supply them from the bootloader
prompt at runtime.[!! If you are using the GRUB bootloader, the configuration file is either /boot/grub/grub.conf
or /boot/grub/menu.Ist depending on your distribution. If you are a LILO user, the configuration file is
/etc/lilo.conf. An example grub.conf file (with comments added) is listed here. You can figure out the genesis of
the preceding boot message if you look at the line following titl e kernel 2.6.23:

[1] Bootloaders on embedded devices are usually "slim" and do not support configuration files or equivalent mechanisms. Because of this,
many non-x86 architectures support a kernel configuration option called CONFI G_CVDLI NE that you can use to supply the kernel command line

at build time.

default O #Boot the 2.6.23 kernel by default



tinmeout 5 #5 second to alter boot order or paraneters

title kernel 2.6.23 #Boot Option 1
#The boot image resides in the first partition of the first disk
#under the /boot/ directory and is named vnminuz-2.6.23. 'ro'
#i ndicates that the root partition should be nounted read-only.
kernel (hdO, 0)/boot/vm inuz-2.6.23 ro root=/dev/hdal

#Look under section "Freeing initrd nmenory: 387k freed"
initrd (hd0,0)/boot/initrd

Command-line arguments affect the code path traversed during boot. As a simple example, assume that the
command-line argument of interest is called boot node. If this parameter is set to 1, you would like to print
some debug messages during boot and switch to a runlevel of 3 at the end of the boot. (Wait until the boot
messages are printed out by the init process to learn the semantics of runlevels.) If boot nbde is instead set to
0, you would prefer the boot to be relatively laconic, and the runlevel set to 2. Because you are already familiar
with init/main.c, let's add the following modification to it:

Code View:

static unsigned int bootnode = 1;

static int __init

i s_boot node_setup(char *str)

{
get _option(&str, &bootnode);
return 1;

}

/* Handl e paraneter "bootnode=" */
__setup("boot node=", is_bootnbde_setup);

i f (bootnode) {
/* Print verbose output */
[* ... 0%

}

[* ... *
/* |f bootnpbde is 1, choose an init runlevel of 3, else

switch to a run level of 2 */
i f (bootnode) {

argv_init[++args] = "3";
} else {

argv_init[++args] = "2";
}
[* o0 *]

Rebuild the kernel as you did earlier and try out the change. We discuss more about kernel command-line
arguments in the section "Memory Layout" in Chapter 18, "Embedding Linux."



Calibrating Delay...1197.46 BogoMIPS (Ipj=2394935)

During boot, the kernel calculates the number of times the processor can execute an internal delay loop in one
jJiffy, which is the time interval between two consecutive ticks of the system timer. As you would expect, the
calculation has to be calibrated to the processing speed of your CPU. The result of this calibration is stored in a
kernel variable called | oops_per_j i ffy. One place where the kernel makes use of | oops_per _jiffy iswhen a
device driver desires to delay execution for small durations in the order of microseconds.

To understand the delay-loop calibration code, let's take a peek inside cal i brat e_del ay(), defined in
init/calibrate.c. This function cleverly derives floating-point precision using the integer kernel. The following
snippet (with some comments added) shows the initial portion of the function that carves out a coarse value for
| oops_per_jiffy:

| oops_per_jiffy = (1 << 12); /* Initial approxi mation = 4096 */

printk(KERN_DEBUG "Cal i brating delay loop... ");

while ((loops_per_jiffy <<= 1) I=0) {

ticks = jiffies; /* As you will find out in the section, "Kernel
Timers," the jiffies variable contains the
nunber of tiner ticks since the kernel
started, and is increnented in the tiner
interrupt handler */

while (ticks == jiffies); /* Wait until the start
of the next jiffy */

ticks = jiffies;

/* Delay */

__del ay(l oops_per_jiffy);

/* Did the wait outlast the current jiffy? Continue if
it didn't */
ticks = jiffies - ticks;
if (ticks) break;
}

| oops_per_jiffy >>= 1; /* This fixes the nbst significant bit and is
t he | ower-bound of |oops_per_jiffy */

The preceding code begins by assuming that | oops_per _j i f fy is greater than 4096, which translates to a
processor speed of roughly one million instructions per second (MIPS). It then waits for a fresh jiffy to start and
executes the delay loop, __del ay(| oops_per _ji ffy). If the delay loop outlasts the jiffy, the previous value of
| oops_per_jiffy (obtained by bitwise right-shifting it by one) fixes its most significant bit (MSB). Otherwise,
the function continues by checking whether it will obtain the MSB by bitwise left-shifting | oops_per _jiffy.
When the kernel thus figures out the MSB of | oops_per _ji ffy, it works on the lower-order bits and fine-tunes
its precision as follows:

| oopbit = | oops_per_jiffy;

/* Gradual ly work on the | ower-order bits */
while (I ps_precision-- && (loopbit >>= 1)) {
| oops_per_jiffy | = loopbit;
ticks = jiffies;
while (ticks == jiffies); /* Wait until the start
of the next jiffy */
ticks = jiffies;



/* Delay */
__delay(l oops_per_jiffy);

if (jiffies !'=ticks) /* longer than 1 tick */
| oops_per_jiffy & ~l oopbit;

The preceding snippet figures out the exact combination of the lower bits of | oops_per _j i ffy when the delay
loop crosses a jiffy boundary. This calibrated value is used to derive an unscientific measure of the processor
speed, known as BogoMIPS. You can use the BogoMIPS rating as a relative measurement of how fast a CPU can
run. On a 1.6GHz Pentium M-based laptop, the delay-loop calibration yielded a value of 2394935 for

| oops_per_jiffy as announced by the preceding boot message. The BogoMIPS value is obtained as follows:

BogoMIPS =1 oops_per _ji ffy * Number of jiffies in 1 second * Number of
instructions consumed by the internal delay loop in units of 1 million

= (2394935 * HZ * 2) / (1 million)
= (2394935 * 250 * 2) / (1000000)
= 1197.46 (as displayed in the preceding boot message)

We further discuss ji ffies, HZ, and | oops_per_j i ffy in the section "Kernel Timers" later in this chapter.

Checking HLT Instruction

Because the Linux kernel is supported on a variety of hardware platforms, the boot code checks for
architecture-dependent bugs. Verifying the sanity of the halt (HLT) instruction is one such check.

The HLT instruction supported by x86 processors puts the CPU into a low-power sleep mode that continues until
the next hardware interrupt occurs. The kernel uses the HLT instruction when it wants to put the CPU in the idle
state (see function cpu_i dl e() defined in arch/x86/kernel/process_32.c).

For problematic CPUs, the no- hl t kernel command-line argument can be used to disable the HLT instruction. If
no- hl t is turned on, the kernel busy-waits while it's idle, rather than keep the CPU cool by putting it in the HLT
state.

The preceding boot message is generated when the startup code in init/main.c calls check_bugs() defined in
include/asm-your-arch/bugs.h.

NET: Registered Protocol Family 2

The Linux socket layer is a uniform interface through which user applications access various networking
protocols. Each protocol registers itself with the socket layer using a unique family number (defined in
include/linux/socket.h) assigned to it. Family 2 in the preceding message stands for AF_I NET (Internet Protocol).

Another registered protocol family often found in boot messages is AF_NETLI NK (Family 16). Netlink sockets
offer a method to communicate between user processes and the kernel. Functionalities accomplished via netlink
sockets include accessing the routing table and the Address Resolution Protocol (ARP) table (see
include/linux/netlink.h for the full usage list). Netlink sockets are more suitable than system calls to accomplish
such tasks because they are asynchronous, simpler to implement, and dynamically linkable.

Another protocol family commonly enabled in the kernel is AF_UNI X or UNIX-domain sockets. Programs such as
X Windows use them for interprocess communication on the same system.



Freeing Initrd Memory: 387k Freed

Initrd is a memory-resident virtual disk image loaded by the bootloader. It's mounted as the initial root
filesystem after the kernel boots, to hold additional dynamically loadable modules required to mount the disk
partition that holds the actual root filesystem. Because the kernel runs on different hardware platforms that use
diverse storage controllers, it's not feasible for distributions to enable device drivers for all possible disk drives
in the base kernel image. Drivers specific to your system's storage device are packed inside initrd and loaded
after the kernel boots, but before the root filesystem is mounted. To create an initrd image, use the nkinitrd
command.

The 2.6 kernel includes a feature called initramfs that bring several benefits over initrd. Whereas the latter
emulates a disk (hence called initramdisk or initrd) and suffers the overheads associated with the Linux block
1/0 subsystem such as caching, the former essentially gets the cache itself mounted like a filesystem (hence
called initramfs).

Initramfs, like the page cache over which it's built, grows and shrinks dynamically unlike initrd and, hence,
reduces memory wastage. Also, unlike initrd, which requires you to include the associated filesystem driver
(e.g., EXT2 drivers if you have an EXT2 filesystem on your initrd), initramfs needs no filesystem support. The
initramfs code is tiny because it's just a small layer on top of the page cache.

You can pack your initial root filesystem into a compressed cpio archive[?] and pass it to the kernel command
line using the i ni t r d= argument or build it as part of the kernel image using the | Nl TRAMFS_SOURCE menu
option during kernel configuration. With the latter, you may either provide the filename of a cpio archive or the
path name to a directory tree containing your initramfs layout. During boot, the kernel extracts the files into an
initramfs root filesystem (also called rootfs) and executes a top-level /init program if it finds one. This method
of obtaining an initial rootfs is especially useful for embedded platforms, where all system resources are at a
premium. To create an initramfs image, use nki ni tranf s. Look at Documentation/filesystems/ramfs-rootfs-
initramfs.txt for more documentation.

[2] cpio is a UNIX file archival format. You can download it from www.gnu.org/software/cpio.

In this case, we are using initramfs by supplying a compressed cpio archive of the initial root filesystem to the
kernel using the i ni t r d= command-line argument. After unpacking the contents of the archive into rootfs, the
kernel frees the memory where the archive resides (387K in this case) and announces the above boot message.
The freed pages are then doled out to other parts of the kernel that request memory.

As discussed in Chapter 18, initrd and initramfs are sometimes used to hold the actual root filesystem on
embedded devices during development.

10 Scheduler Anticipatory Registered (Default)

The main goal of an 1/0 scheduler is to increase system throughput by minimizing disk seek times, which is the
latency to move the disk head from its existing position to the disk sector of interest. The 2.6 kernel provides
four different 1/0 schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. As the preceding kernel
message indicates, the kernel sets Anticipatory as the default 1/0 scheduler. We look at 1/0 scheduling in
Chapter 14, "Block Drivers."

Setting Up Standard PCI Resources

The next phase of the boot process probes and initializes 1/0 buses and peripheral controllers. The kernel
probes PCIl hardware by walking the PCI bus, and then initializes other 1/0 subsystems. Take a look at the boot
messages in Figure 2.3 to see announcements regarding the initialization of the SCSI subsystem, the USB
controller, the video chip (part of the 855 North Bridge chipset in the messages below), the serial port (8250
UART in this case), PS/2 keyboard and mouse, floppy drives, ramdisk, the loopback device, the IDE controller



(part of the ICH4 South Bridge chipset in this example), the touchpad, the Ethernet controller (€1000 in this
case), and the PCMCIA controller. The identity of the corresponding 1/0 device is labeled against -,

Figure 2.3. Initializing buses and peripheral controllers during boot.

Yenta: CardBus bridge found at
0000: 02: 00. 0 [1014: 0560]

Code View:

SCSI subsysteminitialized = SCS

usbcore: registered new driver hub -3 USB

agpgart: Detected an Intel 855 Chipset. w3 Vi deo

[drm] Initialized drm1.0.0 20040925

PS/ 2 Controller [ PNPO303: KBD, PNPOf 13: MOU]

at 0x60, 0x64 irq 1,12 serio: i8042 KBD port ==3% Keyboard

serial 8250: ttySO at 1/O 0Ox3f8 (irqg = 4)

is a NS16550A ==} Serial Port

Fl oppy drive(s): fdO is 1.44M =+ Fl oppy

RAMDI SK driver initialized: 16 RAM di sks

of 4096K size 1024 bl ocksize =3 Randi sk

| oop: | oaded (nmax 8 devices) =3 Loop back

| CH4: I1DE controller at PCl sl ot

0000: 00: 1f . 1 =3 Hard Di sk

i nput: SynPS/ 2 Synaptics TouchPad as

/class/input/inputl =3 Touchpad

€1000: ethO: e1000 probe: Intel® PRO 1000

Net wor k Connecti on =3 Et her net
s

PCMCI A/ Car dBus

This book discusses many of these driver subsystems in separate chapters. Note that some of these messages
might manifest only later on in the boot process if the drivers are dynamically linked to the kernel as loadable
modules.

EXT3-fs: Mounted Filesystem

The EXT3 filesystem has become the de facto filesystem on Linux. It adds a journaling layer on top of the
veteran EXT2 filesystem to facilitate quick recovery after a crash. The aim is to regain a consistent filesystem
state without having to go through a time-consuming filesystem check (f sck) operation. EXT2 remains the work
engine, while the EXT3 layer additionally logs file transactions on a memory area called journal before
committing the actual changes to disk. EXT3 is backward-compatible with EXT2, so you can add an EXT3 coating
to your existing EXT2 filesystem or peel off the EXT3 to get back your original EXT2 filesystem.

EXT4

The latest version in the EXT filesystem series is EXT4, which has been included in the mainline
kernel starting with the 2.6.19 release, with a tag of "experimental” and a name of ext4dev. EXT4
is largely backward-compatible with EXT3. The home page of the EXT4 project is at
www.bullopensource.org/ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel threads in the next chapter)



called kjournald to assist in journaling. When EXT3 is operational, the kernel mounts the root filesystem and
gets ready for business:

EXT3-fs: nounted filesystemw th ordered data node
kj ournal d starting. Commit interval 5 seconds
VFS: Mounted root (ext3 filesysten).

INIT: Version 2.85 Booting

Init, the parent of all Linux processes, is the first program to run after the kernel finishes its boot sequence. In
the last few lines of init/main.c, the kernel searches different locations in its attempt to locate init:

i f (randi sk_execute_conmand) { /* Look for /init in initranfs */
run_init_process(randi sk_execute_comrand) ;

}

if (execute_command) { /* You may override init and ask the kerne
to execute a custom program using the
"init=" kernel conmmand-line argunment. I|f
you do that, execute_conmand points to the
speci fi ed program */
run_init_process(execut e_conmand);

}

/* Else search for init or sh in the usual places .. */
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

Init receives directions from /etc/inittab. It first executes system initialization scripts present in /etc/rc.sysinit.
One of the important responsibilities of this script is to activate the swap partition, which triggers a boot
message such as this:

Addi ng 1552384k swap on /dev/hda6

Let's take a closer look at what this means. Linux user processes own a virtual address space of 3GB (see the
section "Allocating Memory"). Out of this, the pages constituting the "working set" are kept in RAM. However,
when there are too many programs demanding memory resources, the kernel frees up some used RAM pages
by storing them in a disk partition called swap space. According to a rule of thumb, the size of the swap
partition should be twice the amount of RAM. In this case, the swap space lives in the disk partition /dev/hda6
and has a size of 1552384K bytes.

Init then goes on to run scripts present in the /etc/rc.d/rcX.d/ directory, where X is the runlevel specified in
inittab. A runlevel is an execution state corresponding to the desired boot mode. For example, multiuser text
mode corresponds to a runlevel of 3, while X Windows associates with a runlevel of 5. So, if you see the
message, | NI T: Entering runl evel 3, init has started executing scripts in the /etc/rc.d/rc3.d/ directory.
These scripts start the dynamic device-naming subsystem udev (which we discuss in Chapter 4, "Laying the
Groundwork™) and load kernel modules responsible for driving networking, audio, storage, and so on:

Starting udev: [ K]
Initializing hardware... network audi o storage [Done]



Init finally spawns terminals on virtual consoles. You can now log in.



Chapter 2. A Peek Inside the Kernel
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Before we start our journey into the mystical world of Linux device drivers, let's familiarize
ourselves with some basic kernel concepts by looking at several kernel regions through the lens of
a driver developer. We learn about kernel timers, synchronization mechanisms, and memory
allocation. But let's start our expedition by getting a view from the top; let's skim through boot
messages emitted by the kernel and hit the breaks whenever something looks interesting.

Booting Up

Figure 2.1 shows the Linux boot sequence on an x86-based computer. Linux boot on x86-based hardware is set
into motion when the BIOS loads the Master Boot Record (MBR) from the boot device. Code resident in the MBR
looks at the partition table and reads a Linux bootloader such as GRUB, LILO, or SYSLINUX from the active



partition. The final stage of the bootloader loads the compressed kernel image and passes control to it. The
kernel uncompresses itself and turns on the ignition.

Figure 2.1. Linux boot sequence on x86-based hardware.

Power On

v

BIOS

A4

Bootloader (GRUB/LILOY...)

A4

Real Mode Kernel 86 Real Mode

P N T LTl el

Protected Mode Kernel %86 Protected Mode

The init Process

User Processes and Daemons

x86-based processors have two modes of operation, real mode and protected mode. In real mode, you can
access only the first 1MB of memory, that too without any protection. Protected mode is sophisticated and lets
you tap into many advanced features of the processor such as paging. The CPU has to pass through real mode
en route to protected mode. This road is a one-way street, however. You can't switch back to real mode from
protected mode.

The first-level kernel initializations are done in real mode assembly. Subsequent startup is performed in
protected mode by the function start _kernel () defined in init/main.c, the source file you modified in the
previous chapter. st art _kernel () begins by initializing the CPU subsystem. Memory and process management
are put in place soon after. Peripheral buses and 1/0 devices are started next. As the last step in the boot
sequence, the init program, the parent of all Linux processes, is invoked. Init executes user-space scripts that
start necessary kernel services. It finally spawns terminals on consoles and displays the login prompt.

Each following section header is a message from Figure 2.2 generated during boot progression on an x86-based



laptop. The semantics and the messages may change if you are booting the kernel on other architectures. If
some explanations in this section sound rather cryptic, don't worry; the intent here is only to give you a picture
from 100 feet above and to let you savor a first taste of the kernel's flavor. Many concepts mentioned here in
passing are covered in depth later on.

Figure 2.2. Kernel boot messages.

Code View:
Li nux version 2.6.23.1y (root @ocal host. | ocal domain) (gcc version 4.1.1 20061011 (Red
Hat 4.1.1-30)) #7 SMP PREEMPT Thu Nov 1 11:39:30 | ST 2007
Bl OS- provi ded physi cal RAM nap:
Bl OS- €820: 0000000000000000 - 000000000009f 000 (usabl e)
Bl OS- €820: 000000000009f 000 - 00000000000a0000 (reserved)
758MB LOANVEM avai | abl e.
Kernel command |line: ro root=/dev/hdal
Consol e: col our VGA+ 80x25
Calibrating delay using tiner specific routine.. 1197.46 BogoM PS (| pj =2394935)

CPU. L1 | cache: 32K, L1 D cache: 32K
CPU. L2 cache: 1024K

Checking "hit' instruction... OK
Setting up standard PCl resources
NET: Regi stered protocol famly 2
I P route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP established hash table entries: 131072 (order: 9, 2097152 bytes)

checking if image is initranfs... it is
Freeing initrd nenory: 387k freed

i o schedul er noop registered
i o schedul er anticipatory registered (default)

00: 0a: ttySO at /O 0x3f8 (irqg = 4) is a NS16550A
UniformMilti-PlatformE-IDE driver Revision: 7.00al pha2

i de: Assum ng 33MHz system bus speed for Pl O npdes; override with idebus=xx
I CH4: IDE controller at PCl slot 0000:00:1f.1

Probing IDE interface ideO...

hda: HTS541010G9AT00, ATA DI SK drive

hdc: HL- DT- STCD- RW DVD DRI VE GCC- 4241N, ATAPI CD/ DVD-ROM drive

serio: 8042 KBD port at 0x60,0x64 irq 1
m ce: PS/ 2 nouse device common for all mce

Synaptics Touchpad, nodel: 1, fw 5.9, id: Ox2c6abl, caps: 0x884793/0x0
agpgart: Detected an Intel 855GM Chi pset.
Intel (R) PRO 1000 Network Driver - version 7.3.20-k2

ehci _hcd 0000: 00: 1d. 7: EHCI Host Controller




Yenta: CardBus bridge found at 0000: 02: 00. 0 [ 1014: 0560]
Non-vol atile nmenory driver vl1.2

kjournald starting. Commit interval 5 seconds

EXT3 FS on hda2, internal journa

EXT3-fs: nounted filesystemw th ordered data node.

INI'T: version 2.85 booting

BI1OS-Provided Physical RAM Map

The kernel assembles the system memory map from the BIOS, and this is one of the first boot messages you
will see:

Bl OS- provi ded physi cal RAM map:
Bl OS- €820: 0000000000000000 - 000000000009f 000 (usabl e)

Bl OS- e820: 00000000f f 800000 - 0000000100000000 (reserved)

Real mode initialization code uses the BIOS i nt 0x15 service with function number 0xe820(hence the string

Bl OS- €820 in the preceding message) to obtain the system memory map. The memory map indicates reserved
and usable memory ranges, which is subsequently used by the kernel to create its free memory pool. We
discuss more on the BIOS-supplied memory map in the section "Real Mode Calls" in Appendix B, "Linux and the
BIOS."

758MB LOWMEM Available

The normally addressable kernel memory region (< 896MB) is called low memory. The kernel memory allocator,
kmal | oc() , returns memory from this region. Memory beyond 896MB (called high memory) can be accessed
only using special mappings.

During boot, the kernel calculates and displays the total pages present in these memory zones. We take a
deeper look at memory zones later in this chapter.

Kernel Command Line: ro root=/dev/hdal

Linux bootloaders usually pass a command line to the kernel. Arguments in the command line are similar to the
argv[] list passed to the nmai n() function in C programs, except that they are passed to the kernel instead. You
may add command-line arguments to the bootloader configuration file or supply them from the bootloader
prompt at runtime.[!! If you are using the GRUB bootloader, the configuration file is either /boot/grub/grub.conf
or /boot/grub/menu.Ist depending on your distribution. If you are a LILO user, the configuration file is
/etc/lilo.conf. An example grub.conf file (with comments added) is listed here. You can figure out the genesis of
the preceding boot message if you look at the line following titl e kernel 2.6.23:

[1] Bootloaders on embedded devices are usually "slim" and do not support configuration files or equivalent mechanisms. Because of this,
many non-x86 architectures support a kernel configuration option called CONFI G_CVDLI NE that you can use to supply the kernel command line

at build time.

default O #Boot the 2.6.23 kernel by default



tinmeout 5 #5 second to alter boot order or paraneters

title kernel 2.6.23 #Boot Option 1
#The boot image resides in the first partition of the first disk
#under the /boot/ directory and is named vnminuz-2.6.23. 'ro'
#i ndicates that the root partition should be nounted read-only.
kernel (hdO, 0)/boot/vm inuz-2.6.23 ro root=/dev/hdal

#Look under section "Freeing initrd nmenory: 387k freed"
initrd (hd0,0)/boot/initrd

Command-line arguments affect the code path traversed during boot. As a simple example, assume that the
command-line argument of interest is called boot node. If this parameter is set to 1, you would like to print
some debug messages during boot and switch to a runlevel of 3 at the end of the boot. (Wait until the boot
messages are printed out by the init process to learn the semantics of runlevels.) If boot nbde is instead set to
0, you would prefer the boot to be relatively laconic, and the runlevel set to 2. Because you are already familiar
with init/main.c, let's add the following modification to it:

Code View:

static unsigned int bootnode = 1;

static int __init

i s_boot node_setup(char *str)

{
get _option(&str, &bootnode);
return 1;

}

/* Handl e paraneter "bootnode=" */
__setup("boot node=", is_bootnbde_setup);

i f (bootnode) {
/* Print verbose output */
[* ... 0%

}

[* ... *
/* |f bootnpbde is 1, choose an init runlevel of 3, else

switch to a run level of 2 */
i f (bootnode) {

argv_init[++args] = "3";
} else {

argv_init[++args] = "2";
}
[* o0 *]

Rebuild the kernel as you did earlier and try out the change. We discuss more about kernel command-line
arguments in the section "Memory Layout" in Chapter 18, "Embedding Linux."



Calibrating Delay...1197.46 BogoMIPS (Ipj=2394935)

During boot, the kernel calculates the number of times the processor can execute an internal delay loop in one
jJiffy, which is the time interval between two consecutive ticks of the system timer. As you would expect, the
calculation has to be calibrated to the processing speed of your CPU. The result of this calibration is stored in a
kernel variable called | oops_per_j i ffy. One place where the kernel makes use of | oops_per _jiffy iswhen a
device driver desires to delay execution for small durations in the order of microseconds.

To understand the delay-loop calibration code, let's take a peek inside cal i brat e_del ay(), defined in
init/calibrate.c. This function cleverly derives floating-point precision using the integer kernel. The following
snippet (with some comments added) shows the initial portion of the function that carves out a coarse value for
| oops_per_jiffy:

| oops_per_jiffy = (1 << 12); /* Initial approxi mation = 4096 */

printk(KERN_DEBUG "Cal i brating delay loop... ");

while ((loops_per_jiffy <<= 1) I=0) {

ticks = jiffies; /* As you will find out in the section, "Kernel
Timers," the jiffies variable contains the
nunber of tiner ticks since the kernel
started, and is increnented in the tiner
interrupt handler */

while (ticks == jiffies); /* Wait until the start
of the next jiffy */

ticks = jiffies;

/* Delay */

__del ay(l oops_per_jiffy);

/* Did the wait outlast the current jiffy? Continue if
it didn't */
ticks = jiffies - ticks;
if (ticks) break;
}

| oops_per_jiffy >>= 1; /* This fixes the nbst significant bit and is
t he | ower-bound of |oops_per_jiffy */

The preceding code begins by assuming that | oops_per _j i f fy is greater than 4096, which translates to a
processor speed of roughly one million instructions per second (MIPS). It then waits for a fresh jiffy to start and
executes the delay loop, __del ay(| oops_per _ji ffy). If the delay loop outlasts the jiffy, the previous value of
| oops_per_jiffy (obtained by bitwise right-shifting it by one) fixes its most significant bit (MSB). Otherwise,
the function continues by checking whether it will obtain the MSB by bitwise left-shifting | oops_per _jiffy.
When the kernel thus figures out the MSB of | oops_per _ji ffy, it works on the lower-order bits and fine-tunes
its precision as follows:

| oopbit = | oops_per_jiffy;

/* Gradual ly work on the | ower-order bits */
while (I ps_precision-- && (loopbit >>= 1)) {
| oops_per_jiffy | = loopbit;
ticks = jiffies;
while (ticks == jiffies); /* Wait until the start
of the next jiffy */
ticks = jiffies;



/* Delay */
__delay(l oops_per_jiffy);

if (jiffies !'=ticks) /* longer than 1 tick */
| oops_per_jiffy & ~l oopbit;

The preceding snippet figures out the exact combination of the lower bits of | oops_per _j i ffy when the delay
loop crosses a jiffy boundary. This calibrated value is used to derive an unscientific measure of the processor
speed, known as BogoMIPS. You can use the BogoMIPS rating as a relative measurement of how fast a CPU can
run. On a 1.6GHz Pentium M-based laptop, the delay-loop calibration yielded a value of 2394935 for

| oops_per_jiffy as announced by the preceding boot message. The BogoMIPS value is obtained as follows:

BogoMIPS =1 oops_per _ji ffy * Number of jiffies in 1 second * Number of
instructions consumed by the internal delay loop in units of 1 million

= (2394935 * HZ * 2) / (1 million)
= (2394935 * 250 * 2) / (1000000)
= 1197.46 (as displayed in the preceding boot message)

We further discuss ji ffies, HZ, and | oops_per_j i ffy in the section "Kernel Timers" later in this chapter.

Checking HLT Instruction

Because the Linux kernel is supported on a variety of hardware platforms, the boot code checks for
architecture-dependent bugs. Verifying the sanity of the halt (HLT) instruction is one such check.

The HLT instruction supported by x86 processors puts the CPU into a low-power sleep mode that continues until
the next hardware interrupt occurs. The kernel uses the HLT instruction when it wants to put the CPU in the idle
state (see function cpu_i dl e() defined in arch/x86/kernel/process_32.c).

For problematic CPUs, the no- hl t kernel command-line argument can be used to disable the HLT instruction. If
no- hl t is turned on, the kernel busy-waits while it's idle, rather than keep the CPU cool by putting it in the HLT
state.

The preceding boot message is generated when the startup code in init/main.c calls check_bugs() defined in
include/asm-your-arch/bugs.h.

NET: Registered Protocol Family 2

The Linux socket layer is a uniform interface through which user applications access various networking
protocols. Each protocol registers itself with the socket layer using a unique family number (defined in
include/linux/socket.h) assigned to it. Family 2 in the preceding message stands for AF_I NET (Internet Protocol).

Another registered protocol family often found in boot messages is AF_NETLI NK (Family 16). Netlink sockets
offer a method to communicate between user processes and the kernel. Functionalities accomplished via netlink
sockets include accessing the routing table and the Address Resolution Protocol (ARP) table (see
include/linux/netlink.h for the full usage list). Netlink sockets are more suitable than system calls to accomplish
such tasks because they are asynchronous, simpler to implement, and dynamically linkable.

Another protocol family commonly enabled in the kernel is AF_UNI X or UNIX-domain sockets. Programs such as
X Windows use them for interprocess communication on the same system.



Freeing Initrd Memory: 387k Freed

Initrd is a memory-resident virtual disk image loaded by the bootloader. It's mounted as the initial root
filesystem after the kernel boots, to hold additional dynamically loadable modules required to mount the disk
partition that holds the actual root filesystem. Because the kernel runs on different hardware platforms that use
diverse storage controllers, it's not feasible for distributions to enable device drivers for all possible disk drives
in the base kernel image. Drivers specific to your system's storage device are packed inside initrd and loaded
after the kernel boots, but before the root filesystem is mounted. To create an initrd image, use the nkinitrd
command.

The 2.6 kernel includes a feature called initramfs that bring several benefits over initrd. Whereas the latter
emulates a disk (hence called initramdisk or initrd) and suffers the overheads associated with the Linux block
1/0 subsystem such as caching, the former essentially gets the cache itself mounted like a filesystem (hence
called initramfs).

Initramfs, like the page cache over which it's built, grows and shrinks dynamically unlike initrd and, hence,
reduces memory wastage. Also, unlike initrd, which requires you to include the associated filesystem driver
(e.g., EXT2 drivers if you have an EXT2 filesystem on your initrd), initramfs needs no filesystem support. The
initramfs code is tiny because it's just a small layer on top of the page cache.

You can pack your initial root filesystem into a compressed cpio archive[?] and pass it to the kernel command
line using the i ni t r d= argument or build it as part of the kernel image using the | Nl TRAMFS_SOURCE menu
option during kernel configuration. With the latter, you may either provide the filename of a cpio archive or the
path name to a directory tree containing your initramfs layout. During boot, the kernel extracts the files into an
initramfs root filesystem (also called rootfs) and executes a top-level /init program if it finds one. This method
of obtaining an initial rootfs is especially useful for embedded platforms, where all system resources are at a
premium. To create an initramfs image, use nki ni tranf s. Look at Documentation/filesystems/ramfs-rootfs-
initramfs.txt for more documentation.

[2] cpio is a UNIX file archival format. You can download it from www.gnu.org/software/cpio.

In this case, we are using initramfs by supplying a compressed cpio archive of the initial root filesystem to the
kernel using the i ni t r d= command-line argument. After unpacking the contents of the archive into rootfs, the
kernel frees the memory where the archive resides (387K in this case) and announces the above boot message.
The freed pages are then doled out to other parts of the kernel that request memory.

As discussed in Chapter 18, initrd and initramfs are sometimes used to hold the actual root filesystem on
embedded devices during development.

10 Scheduler Anticipatory Registered (Default)

The main goal of an 1/0 scheduler is to increase system throughput by minimizing disk seek times, which is the
latency to move the disk head from its existing position to the disk sector of interest. The 2.6 kernel provides
four different 1/0 schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. As the preceding kernel
message indicates, the kernel sets Anticipatory as the default 1/0 scheduler. We look at 1/0 scheduling in
Chapter 14, "Block Drivers."

Setting Up Standard PCI Resources

The next phase of the boot process probes and initializes 1/0 buses and peripheral controllers. The kernel
probes PCIl hardware by walking the PCI bus, and then initializes other 1/0 subsystems. Take a look at the boot
messages in Figure 2.3 to see announcements regarding the initialization of the SCSI subsystem, the USB
controller, the video chip (part of the 855 North Bridge chipset in the messages below), the serial port (8250
UART in this case), PS/2 keyboard and mouse, floppy drives, ramdisk, the loopback device, the IDE controller



(part of the ICH4 South Bridge chipset in this example), the touchpad, the Ethernet controller (€1000 in this
case), and the PCMCIA controller. The identity of the corresponding 1/0 device is labeled against -,

Figure 2.3. Initializing buses and peripheral controllers during boot.

Yenta: CardBus bridge found at
0000: 02: 00. 0 [1014: 0560]

Code View:

SCSI subsysteminitialized = SCS
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[drm] Initialized drm1.0.0 20040925
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This book discusses many of these driver subsystems in separate chapters. Note that some of these messages
might manifest only later on in the boot process if the drivers are dynamically linked to the kernel as loadable
modules.

EXT3-fs: Mounted Filesystem

The EXT3 filesystem has become the de facto filesystem on Linux. It adds a journaling layer on top of the
veteran EXT2 filesystem to facilitate quick recovery after a crash. The aim is to regain a consistent filesystem
state without having to go through a time-consuming filesystem check (f sck) operation. EXT2 remains the work
engine, while the EXT3 layer additionally logs file transactions on a memory area called journal before
committing the actual changes to disk. EXT3 is backward-compatible with EXT2, so you can add an EXT3 coating
to your existing EXT2 filesystem or peel off the EXT3 to get back your original EXT2 filesystem.

EXT4

The latest version in the EXT filesystem series is EXT4, which has been included in the mainline
kernel starting with the 2.6.19 release, with a tag of "experimental” and a name of ext4dev. EXT4
is largely backward-compatible with EXT3. The home page of the EXT4 project is at
www.bullopensource.org/ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel threads in the next chapter)



called kjournald to assist in journaling. When EXT3 is operational, the kernel mounts the root filesystem and
gets ready for business:

EXT3-fs: nounted filesystemw th ordered data node
kj ournal d starting. Commit interval 5 seconds
VFS: Mounted root (ext3 filesysten).

INIT: Version 2.85 Booting

Init, the parent of all Linux processes, is the first program to run after the kernel finishes its boot sequence. In
the last few lines of init/main.c, the kernel searches different locations in its attempt to locate init:

i f (randi sk_execute_conmand) { /* Look for /init in initranfs */
run_init_process(randi sk_execute_comrand) ;

}

if (execute_command) { /* You may override init and ask the kerne
to execute a custom program using the
"init=" kernel conmmand-line argunment. I|f
you do that, execute_conmand points to the
speci fi ed program */
run_init_process(execut e_conmand);

}

/* Else search for init or sh in the usual places .. */
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

Init receives directions from /etc/inittab. It first executes system initialization scripts present in /etc/rc.sysinit.
One of the important responsibilities of this script is to activate the swap partition, which triggers a boot
message such as this:

Addi ng 1552384k swap on /dev/hda6

Let's take a closer look at what this means. Linux user processes own a virtual address space of 3GB (see the
section "Allocating Memory"). Out of this, the pages constituting the "working set" are kept in RAM. However,
when there are too many programs demanding memory resources, the kernel frees up some used RAM pages
by storing them in a disk partition called swap space. According to a rule of thumb, the size of the swap
partition should be twice the amount of RAM. In this case, the swap space lives in the disk partition /dev/hda6
and has a size of 1552384K bytes.

Init then goes on to run scripts present in the /etc/rc.d/rcX.d/ directory, where X is the runlevel specified in
inittab. A runlevel is an execution state corresponding to the desired boot mode. For example, multiuser text
mode corresponds to a runlevel of 3, while X Windows associates with a runlevel of 5. So, if you see the
message, | NI T: Entering runl evel 3, init has started executing scripts in the /etc/rc.d/rc3.d/ directory.
These scripts start the dynamic device-naming subsystem udev (which we discuss in Chapter 4, "Laying the
Groundwork™) and load kernel modules responsible for driving networking, audio, storage, and so on:

Starting udev: [ K]
Initializing hardware... network audi o storage [Done]



Init finally spawns terminals on virtual consoles. You can now log in.



Kernel Mode and User Mode

Some operating systems, such as MS-DOS, always execute in a single CPU mode, but UNIX-like operating
systems use dual modes to effectively implement time-sharing. On a Linux machine, the CPU is either in a
trusted kernel mode or in a restricted user mode. All user processes execute in user mode, whereas the kernel
itself executes in kernel mode.

Kernel mode code has unrestricted access to the entire processor instruction set and to the full memory and 1/0
space. If a user mode process needs these privileges, it has to channel requests through device drivers or other
kernel mode code via system calls. User mode code is allowed to page fault, however, whereas kernel mode
code isn't.
In 2.4 and earlier kernels, only user mode processes could be context switched out and replaced by other
processes. Kernel mode code could monopolize the processor until either

¢ It voluntarily relinquished the CPU.
or

e An interrupt or an exception occurred.

With the introduction of kernel preemption in the 2.6 release, most kernel mode code can also be context
switched.



Process Context and Interrupt Context

The kernel accomplishes useful work using a combination of process contexts and interrupt contexts. Kernel
code that services system calls issued by user applications runs on behalf of the corresponding application
processes and is said to execute in process context. Interrupt handlers, on the other hand, run asynchronously
in interrupt context. Processes contexts are not tied to any interrupt context and vice versa.

Kernel code running in process context is preemptible. An interrupt context, however, always runs to completion
and is not preemptible. Because of this, there are restrictions on what can be done from interrupt context. Code
executing from interrupt context cannot do the following:

e Go to sleep or relinquish the processor
e Acquire a mutex

¢ Perform time-consuming tasks

e Access user space virtual memory

Look at section "Interrupt Handing" in Chapter 4 for a full discussion of the interrupt context.



Kernel Timers

The working of many parts of the kernel is critically dependent on the passage of time. The Linux kernel makes
use of different timers provided by the hardware to provide time-dependent services such as busy-waiting and
sleep-waiting. The processor wastes cycles while it busy-waits but relinquishes the CPU when it sleep-waits.
Naturally, the former is done only when the latter is not feasible. The kernel also facilitates scheduling of
functions that desire to run after a specified time duration has elapsed.

Let's first discuss the semantics of some important kernel timer variables such asjiffies, HZ, and xti ne. Next,

let's measure execution times on a Pentium-based system using the Pentium Time Stamp Counter (TSC). Let's
also see how Linux uses the Real Time Clock (RTC).

HZ and Jiffies

System timers interrupt the processor (or "pop") at programmable frequencies. This frequency, or the number
of timer ticks per second, is contained in the kernel variable HZ. Choosing a value for HZ is a trade-off. A large
HZ results in finer timer granularity, and hence better scheduling resolution. However, bigger values of HZ also

result in larger overhead and higher power consumption, because more cycles are burnt in the timer interrupt
context.

The value of HZ is architecture-dependent. On x86 systems, HZ used to be set to 100 in 2.4 kernels by
default. With 2.6, this value changed to 1000, but with 2.6.13, it was lowered to 250. On ARM-based
platforms, 2.6 kernels set HZ to 100. With current kernels, you can choose a value for HZ at build time
through the configuration menu. The default setting for this option depends on your distribution.

The 2.6.21 kernel introduced support for a tickless kernel (CONFI G_NO_HzZ), which dynamically triggers

timer interrupts depending on system load. The tickless system implementation is outside the scope of
this chapter.

jiffies holds the number of times the system timer has popped since the system booted. The kernel
increments the ji ffi es variable, HZ times every second. Thus, on a kernel with a HZ value of 100, a jiffy is a
10-millisecond duration, whereas on a kernel with HZ set to 1000, a jiffy is only 1-millisecond long.

To better understand HZ and j i f fi es, consider the following code snippet from the IDE driver
(drivers/ide/ide.c) that polls disk drives for busy status:

unsigned long tineout = jiffies + (3*HzZ);
whi | e (hwgr oup- >busy) {
[* ... %
if (time_after(jiffies, tinmeout)) {
return - EBUSY;
}
[* ... %]
}
return SUCCESS;



The preceding code returns SUCCESS if the busy condition gets cleared in less than 3 seconds, and - EBUSY
otherwise. 3*HZ is the number of j i ffi es present in 3 seconds. The calculated timeout, (jiffies + 3*HzZ), is
thus the new value of ji f fi es after the 3-second timeout elapses. The ti ne_after () macro compares the
current value of ji f fi es with the requested timeout, taking care to account for wraparound due to overflows.
Related functions available for doing similar comparisons are ti me_before(), ti me_before_eq(), and
time_after_eq().

jiffies is defined as volatile, which asks the compiler not to optimize access to the variable. This ensures that
jiffies, which is updated by the timer interrupt handler during each tick, is reread during each pass through
the loop.

For the reverse conversion from j i f fi es to seconds, take a look at this snippet from the USB host controller
driver, drivers/usb/host/ehci-sched.c:

if (stream >reschedul ed) {
ehci _info(ehci, "ep%ls-iso rescheduled " "%u tinmes in %u
seconds\ n", stream >bEndpoi nt Address, is_in? "in":
"out", stream >reschedul ed,
((jiffies — stream>start)/Hz));

The preceding debug statement calculates the amount of time in seconds within which this USB endpoint stream
(we discuss USB in Chapter 11, "Universal Serial Bus") was rescheduled st r eam >r eschedul ed times.
(iffies-stream >start) is the number of jiffies that elapsed since the rescheduling started. The division by
HZ converts that value into seconds.

The 32-bitji ffi es variable overflows in approximately 50 days, assuming a HZ value of 1000. Because system
uptimes can be many times that duration, the kernel provides a variable called j i ffi es_64 to hold 64-bit (u64)
jiffies. The linker positions jiffies_64 such that its bottom 32 bits collocate with ji ffi es. On 32-bit
machines, the compiler needs two instructions to assign one u64 variable to another, so reading jiffies_64 is
not atomic. To get around this problem, the kernel provides a function, get _ji ffi es_64(). Look at
cpufreqg_stats_updat e() defined in drivers/cpufreqg/cpufreq_stats.c for a usage example.

Long Delays

In kernel terms, delays in the order of ji ffi es are considered long durations. A possible, but nonoptimal, way
to accomplish long delays is by busy-looping. A function that busy-waits has a dog-in-the-manger attitude. It
neither uses the processor for doing useful work nor lets others use it. The following code hogs the processor for
1 second:

unsigned long timeout = jiffies + HzZ;
while (tinme_before(jiffies, timeout)) continue;

A better approach is to sleep-wait, instead of busy-wait. Your code yields the processor to others, while waiting
for the time delay to elapse. This is done using schedul e_ti neout () :

unsigned long timeout = jiffies + HzZ;
schedul e_timeout(tinmeout); /* Allow other parts of the
kernel to run */

The delay guarantee is only on the lower bound of the timeout. Whether from kernel space or from user space,
it's difficult to get more precise control over timeouts than the granularity of HZ because process time slices are
updated by the kernel scheduler only during timer ticks. Also, even if your process is scheduled to run after the



specified timeout, the scheduler can decide to pick another process from the run queue based on priorities.[3]

[3] These scheduler properties have changed with the advent of the CFS scheduler in the 2.6.23 kernel. Linux process schedulers are discussed
in Chapter 19, "Drivers in User Space."

Two other functions that facilitate sleep-waiting are wai t _event _ti neout () and nsl eep() . Both of them are
implemented with the help of schedul e_ti meout (). wait_event _tineout () is used when your code desires to
resume execution if a specified condition becomes true or if a timeout occurs. nsl eep() sleeps for the specified
number of milliseconds.

Such long-delay techniques are suitable for use only from process context. Sleep-waiting cannot be done from
interrupt context because interrupt handlers are not allowed to schedul e() or sleep. (See "Interrupt Handling"
in Chapter 4 for a list of do's and don'ts for code executing in interrupt context.) Busy-waiting for a short
duration is possible from interrupt context, but long busy-waiting in that context is considered a mortal sin.
Equally taboo is long busy-waiting with interrupts disabled.

The kernel also provides timer APIs to execute a function at a point of time in the future. You can dynamically
define a timer using i nit _tiner () or statically create one with DEFI NE_TI MER() . After this is done, populate a
timer_list with the address and parameters of your handler function, and register it using add_ti ner () :

#i ncl ude <linux/tiner.h>

struct timer_list my_tiner;

init_timer(&y_tiner); /* Also see setup_tiner() */

ny_tiner.expire = jiffies + n*HZ; /* nis the tinmeout in nunber
of seconds */

nmy_timer.function = tiner_func; /* Function to execute
after n seconds */

ny_timer.data = func_paraneter; /* Paraneter to be passed
to tinmer_func */

add_timer(&nny_timer); /* Start the timer */

Note that this is a one-shot timer. If you want to run ti ner _func() periodically, you also need to add the
preceding code inside ti nmer _func() to schedule itself after the next timeout:

static void tinmer_func(unsigned | ong func_paraneter)
{

/* Do work to be done periodically */

Y |

init_timer(&y_tiner);
ny_tinmer.expire =jiffies + n*Hz
my_tiner.data func_paraneter;
my_tinmer.function = tinmer_func;
add_timer (&nny_tiner);

You may use nod_ti mer () to change the expiration of ny_timer, del _tiner() tocancel ny_timer, and
ti mer _pendi ng() to see whether my_ti ner is pending at the moment. If you look at kernel/timer.c, you will
find that schedul e_ti neout () internally uses these same APIs.



User-space functions such as cl ock_settime() and cl ock_getti me() are used to access kernel timer services
from user space. A user application may use setitiner() and getitimer() to control the delivery of an alarm
signal when a specified timeout expires.

Short Delays

In kernel terms, sub-jiffy delays qualify as short durations. Such delays are commonly requested from both
process and interrupt contexts. Because it is not possible to use jiffy-based methods to implement sub-jiffy
delays, the methods discussed in the previous section to sleep-wait cannot be used for small timeouts. The only
solution is to busy-wait.

Kernel APIs that implement short delays are ndel ay() , udel ay() , and ndel ay() , which support millisecond,
microsecond, and nanosecond delays, respectively. The actual implementations of these functions are
architecture-specific and may not be available on all platforms.

Busy-waiting for short durations is accomplished by measuring the time the processor takes to execute an
instruction and looping for the necessary number of iterations. As discussed earlier in this chapter, the kernel
performs this measurement during boot and stores the value in a variable called | oops_per_j i ffy. The short-
delay APIs use | oops_per _j i ffy to decide the number of times they need to busy-loop. To achieve a 1-
microsecond delay during a handshake process, the USB host controller driver, drivers/usb/host/ehci-hcd.c,
calls udel ay() , which internally uses | oops_per _jiffy:

do {
result = ehci_readl (ehci, ptr);
[* ... %]
if (result == done) return O;
udel ay(1); /[* Internally uses |oops_per_jiffy */
usec- -;

} while (usec > 0);

Pentium Time Stamp Counter

The Time Stamp Counter (TSC) is a 64-bit register present in Pentium-compatible processors that counts the
number of clock cycles consumed by the processor since startup. Because the TSC gets incremented at the rate
of the processor cycle speed, it provides a high-resolution timer. The TSC is commonly used for profiling and
instrumenting code. It is accessed using the r dt sc instruction to measure execution time of intervening code
with microsecond precision. TSC ticks can be converted to seconds by dividing by the CPU clock speed, which
can be read from the kernel variable, cpu_khz.

In the following snippet, | ow_t sc_ti cks contains the lower 32 bits of the TSC, while hi gh_t sc_ti cks contains
the higher 32 bits. The lower 32 bits overflow in a few seconds depending on your processor speed but is
sufficient for many code instrumentation purposes as shown here:

unsi gned long low tsc_ticks0O, high_tsc_ticksO;

unsi gned long low tsc_ticksl, high_tsc_ticksl;

unsi gned | ong exec_ti ne;

rdtsc(low tsc_ticks0, high_tsc_ticks0); /* Tinmestanp

before */
printk("Hello World\n"); /* Code to be

profiled */
rdtsc(low tsc_ticksl, high_tsc_ticksl); /* Tinmestanp after */
exec_time = low tsc_ticksl - low tsc_ticksO;

exec_ti me measured 871 (or half a microsecond) on a 1.8GHz Pentium box.



Support for high-resolution timers (CONFI G_H GH _RES_TI MERS) has been merged with the 2.6.21 kernel.
It makes use of hardware-specific high-speed timers to provide high-precision capabilities to APIs such
as nanosl eep() . On Pentium-class machines, the kernel leverages the TSC to offer this capability.

Real Time Clock

The RTC tracks absolute time in nonvolatile memory. On x86 PCs, RTC registers constitute the top few locations
of a small chunk of battery-powered*] complementary metal oxide semiconductor (CMOS) memory. Look at
Figure 5.1 in Chapter 5, "Character Drivers," for the location of the CMOS in the legacy PC architecture. On

embedded systems, the RTC might be internal to the processor, or externally connected via the 12C or SPI
buses discussed in Chapter 8, "The Inter-Integrated Circuit Protocol."

[4] RTC batteries last for many years and usually outlive the life span of computers, so you should never have to replace them.

You may use the RTC to do the following:

¢ Read and set the absolute clock, and generate interrupts during clock updates.

e Generate periodic interrupts with frequencies ranging from 2HZ to 8192HZ.

e Set alarms
Many applications need the concept of absolute time or wall time. Because ji ffi es is relative to the time when
the system booted, it does not contain wall time. The kernel maintains wall time in a variable called xt i ne.
During boot, xti ne is initialized to the current wall time by reading the RTC. When the system halts, the wall

time is written back to the RTC. You can use do_getti neof day() to read wall time with the highest resolution
supported by the hardware:

#i nclude <linux/tinme.h>

static struct tineval curr_tine;

do_gettineof day(&curr_tine);

ny_timestanp = cpu_to_le32(curr_tine.tv_sec); /* Record tinmestanp */

There are also a bunch of functions available to user-space code to access wall time. They include the following:

e tine(), which returns the calendar time, or the humber of seconds since Epoch (00:00:00 on January 1,
1970)

e localtine(), which returns the calendar time in broken-down format

e nktine(), which does the reverse of | ocal ti me()



e gettinmeofday(), which returns the calendar time with microsecond precision if your platform supports it

Another way to use the RTC from user space is via the character device, /dev/rtc. Only one process is allowed to
access this device at a time.

We discuss more about RTC drivers in Chapter 5 and Chapter 8. In Chapter 19, we develop an example user
application that uses /dev/rtc to perform periodic work with microsecond precision.



Concurrency in the Kernel

With the arrival of multicore laptops, Symmetric Multi Processing (SMP) is no longer confined to the realm of hi-
tech users. SMP and kernel preemption are scenarios that generate multiple threads of execution. These threads
can simultaneously operate on shared kernel data structures. Because of this, accesses to such data structures
have to be serialized.

Let's discuss the basics of protecting shared kernel resources from concurrent access. We start with a simple
example and gradually introduce complexities such as interrupts, kernel preemption, and SMP.

Spinlocks and Mutexes

A code area that accesses shared resources is called a critical section. Spinlocks and mutexes (short for mutual
exclusion) are the two basic mechanisms used to protect critical sections in the kernel. Let's look at each in
turn.

A spinlock ensures that only a single thread enters a critical section at a time. Any other thread that desires to
enter the critical section has to remain spinning at the door until the first thread exits. Note that we use the
term thread to refer to a thread of execution, rather than a kernel thread.

The basic usage of spinlocks is as follows:

#i ncl ude <Iinux/spinlock. h>
spinlock_t nylock = SPIN_ LOCK UNLOCKED; /* Initialize */

/* Acquire the spinlock. This is inexpensive if there

* is no one inside the critical section. In the face of
* contention, spinlock() has to busy-wait.

*/

spi n_I ock( &yl ock) ;

/* ... Critical Section code ... */

spi n_unl ock( &yl ock); /* Rel ease the |ock */

In contrast to spinlocks that put threads into a spin if they attempt to enter a busy critical section, mutexes put
contending threads to sleep until it's their turn to occupy the critical section. Because it's a bad thing to
consume processor cycles to spin, mutexes are more suitable than spinlocks to protect critical sections when the
estimated wait time is long. In mutex terms, anything more than two context switches is considered long,
because a mutex has to switch out the contending thread to sleep, and switch it back in when it's time to wake
it up.

In many cases, therefore, it's easy to decide whether to use a spinlock or a mutex:

¢ If the critical section needs to sleep, you have no choice but to use a mutex. It's illegal to schedule,
preempt, or sleep on a wait queue after acquiring a spinlock.

e Because mutexes put the calling thread to sleep in the face of contention, you have no choice but to use
spinlocks inside interrupt handlers. (You will learn more about the constraints of the interrupt context in
Chapter 4.)



Basic mutex usage is as follows:
#i ncl ude <Iinux/nutex. h>
/* Statically declare a nutex. To dynamically
create a nutex, use nutex_init() */
static DEFI NE_MJTEX( nynut ex) ;
/* Acquire the mutex. This is inexpensive if there
* is no one inside the critical section. In the face of
* contention, nutex_lock() puts the calling thread to sl eep.
*/
nmut ex_| ock( &y nut ex) ;
/* ... Critical Section code ... */
mut ex_unl ock( &rynut ex) ; /* Rel ease the mutex */

To illustrate the use of concurrency protection, let's start with a critical section that is present only in process
context and gradually introduce complexities in the following order:

1. Critical section present only in process context on a Uniprocessor (UP) box running a nonpreemptible
kernel.

2. Critical section present in process and interrupt contexts on a UP machine running a nonpreemptible
kernel.

3. Critical section present in process and interrupt contexts on a UP machine running a preemptible kernel.

4. Critical section present in process and interrupt contexts on an SMP machine running a preemptible
kernel.



The Old Semaphore Interface

The mutex interface, which replaces the older semaphore interface, originated in the —rt tree and
was merged into the mainline with the 2.6.16 kernel release. The semaphore interface is still
around, however. Basic usage of the semaphore interface is as follows:

#i ncl ude <asnm semaphore. h> /* Architecture dependent
header */

/* Statically declare a semaphore. To dynanically
create a semaphore, use init_MJTEX() */
stati c DECLARE_MUTEX(nysemn) ;

down( &mysem ; /* Acquire the senmaphore */
/* ... Critical Section code ... */
up( &rysem ; /* Rel ease the senmaphore */

Semaphores can be configured to allow a predetermined number of threads into the critical section
simultaneously. However, semaphores that permit more than a single holder at a time are rarely
used.

Case 1: Process Context, UP Machine, No Preemption

This is the simplest case and needs no locking, so we won't discuss this further.

Case 2: Process and Interrupt Contexts, UP Machine, No Preemption

In this case, you need to disable only interrupts to protect the critical region. To see why, assume that A and B
are process context threads, and C is an interrupt context thread, all vying to enter the same critical section, as

shown in Figure 2.4.

Figure 2.4. Process and interrupt context threads inside a critical section.
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Because Thread C is executing in interrupt context and always runs to completion before yielding to Thread A or
Thread B, it need not worry about protection. Thread A, for its part, need not be concerned about Thread B (and
vice versa) because the kernel is not preemptible. Thus, Thread A and Thread B need to guard against only the
possibility of Thread C stomping through the critical section while they are inside the same section. They
achieve this by disabling interrupts prior to entering the critical section:

Poi nt A
local _irqg_disable(); /* Disable Interrupts in local CPU */
/* ... Critical Section ... */
 ocal _irqg_enabl e(); /* Enable Interrupts in local CPU */

However, if interrupts were already disabled when execution reached Point A, | ocal _i rg_enabl e() creates the
unpleasant side effect of reenabling interrupts, rather than restoring interrupt state. This can be fixed as
follows:

unsi gned | ong fl ags;

Poi nt A
| ocal _irq_save(flags); /* Disable Interrupts */
/* ... Critical Section ... */

local _irqg_restore(flags); /* Restore state to what
it was at Point A */

This works correctly irrespective of the interrupt state at Point A.

Case 3: Process and Interrupt Contexts, UP Machine, Preemption

If preemption is enabled, mere disabling of interrupts won't protect your critical region from being trampled
over. There is the possibility of multiple threads simultaneously entering the critical section in process context.
Referring back to Figure 2.4 in this scenario, Thread A and Thread B now need to protect themselves against
each other in addition to guarding against Thread C. The solution apparently, is to disable kernel preemption
before the start of the critical section and reenable it at the end, in addition to disabling/reenabling interrupts.



For this, Thread A and Thread B use the irq variant of spinlocks:
unsi gned | ong fl ags;

Poi nt A
/* Save interrupt state.
* Disable interrupts - this inplicitly disables preenption */
spi n_l ock_irgsave( &yl ock, flags);

/* ... Critical Section ... */

/* Restore interrupt state to what it was at Point A */
spi n_unl ock_irqrestore(&myl ock, flags);

Preemption state need not be explicitly restored to what it was at Point A because the kernel internally does
that for you via a variable called the preemption counter. The counter gets incremented whenever preemption is
disabled (using pr eenpt _di sabl e()) and gets decremented whenever preemption is enabled (using

preenpt _enabl e()). Preemption kicks in only if the counter value is zero.

Case 4: Process and Interrupt Contexts, SMP Machine, Preemption

Let's now assume that the critical section executes on an SMP machine. Your kernel has been configured with
CONFI G_SMP and CONFI G_PREEMPT turned on.

In the scenarios discussed this far, spinlock primitives have done little more than enable/disable preemption and
interrupts. The actual locking functionality has been compiled away. In the presence of SMP, the locking logic
gets compiled in, and the spinlock primitives are rendered SMP-safe. The SMP-enabled semantics is as follows:

unsi gned | ong fl ags;

Poi nt A
/*
- Save interrupt state on the local CPU
- Disable interrupts on the local CPU This inplicitly disables
preenpti on.
- Lock the section to regul ate access by other CPUs

*/

spi n_|l ock_i rgsave( &yl ock, flags);
/* ... Critical Section ... */

/*

- Restore interrupt state and preenption to what it
was at Point A for the local CPU
- Rel ease the | ock
*/
spi n_unl ock_i rqrestore( &yl ock, flags);

On SMP systems, only interrupts on the local CPU are disabled when a spinlock is acquired. So, a process
context thread (say Thread A in Figure 2.4) might be running on one CPU, while an interrupt handler (say
Thread C in Figure 2.4) is executing on another CPU. An interrupt handler on a nonlocal processor thus needs to
spin-wait until the process context code on the local processor exits the critical section. The interrupt context
code calls spi n_I ock() /spi n_unl ock() to do this:



spi n_| ock( &yl ock) ;

/[* ... Critical Section ... */

spi n_unl ock( &yl ock) ;

Similar to the irq variants, spinlocks also have bottom half (BH) flavors. spi n_I ock_bh() disables bottom halves

when the lock is acquired, whereas spi n_unl ock_bh() reenables bottom halves when the lock is released. We
discuss bottom halves in Chapter 4.

The —rt tree

The real time (-rt) tree, also called the CONFI G_PREEMPT_RT patch-set, implements low-latency
modifications to the kernel. The patch-set, downloadable from
www.kernel.org/pub/linux/kernel/projects/rt, allows most of the kernel to be preempted, partly by
replacing many spinlocks with mutexes. It also incorporates high-resolution timers. Several -rt
features have been integrated into the mainline kernel. You will find detailed documentation at the
project's wiki hosted at http://rt.wiki.kernel.org/.

The kernel has specialized locking primitives in its repertoire that help improve performance under specific
conditions. Using a mutual-exclusion scheme tailored to your needs makes your code more powerful. Let's take
a look at some of the specialized exclusion mechanisms.

Atomic Operators

Atomic operators are used to perform lightweight one-shot operations such as bumping counters, conditional
increments, and setting bit positions. Atomic operations are guaranteed to be serialized and do not need locks
for protection against concurrent access. The implementation of atomic operators is architecture-dependent.

To check whether there are any remaining data references before freeing a kernel network buffer (called an
skbuf f), the skb_rel ease_dat a() routine defined in net/core/skbuff.c does the following:

if (!skb->cloned ||
/* Atomically decrenent and check if the returned value is zero */
latom c_sub_return(skb->nohdr ? (1 << SKB DATAREF _SHI FT) + 1 :
1, &kb_shi nf o(skb) - >dataref)) {
[* ... 0%
kfree(skb->head);
}

While skb_r el ease_dat a() is thus executing, another thread using skbuff _cl one() (defined in the same file)
might be simultaneously incrementing the data reference counter:

[* o0 %]

/* Atomi cally bunp up the data reference count */
atom c_i nc( & skb_shi nfo(skb)->dataref));

[* o0 *]

The use of atomic operators protects the data reference counter from being trampled by these two threads. It
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also eliminates the hassle of using locks to protect a single integer variable from concurrent access.

The kernel also supports operators such as set _bit(),clear_bit(), andtest_and_set_bit() to atomically
engage in bit manipulations. Look at include/asm-your-arch/atomic.h for the atomic operators supported on
your architecture.

Reader-Writer Locks

Another specialized concurrency regulation mechanism is a reader-writer variant of spinlocks. If the usage of a
critical section is such that separate threads either read from or write to a shared data structure, but don't do
both, these locks are a natural fit. Multiple reader threads are allowed inside a critical region simultaneously.
Reader spinlocks are defined as follows:

rw ock_t nyrw ock = RW LOCK_UNLOCKED;

read_| ock( &ryrw ock) ; /* Acquire reader |ock */
/* ... Critical Region ... */
read_unl ock( &ryrw ock) ; /* Rel ease | ock */

However, if a writer thread enters a critical section, other reader or writer threads are not allowed inside. To use
writer spinlocks, you would write this:

rw ock_t nyrw ock = RW LOCK_ UNLOCKED;

wite_| ock(&yrw ock); /* Acquire witer lock */
/* ... Critical Region ... */
write_unl ock(&ryrw ock); /* Release |ock */

Look at the IPX routing code present in net/ipx/ipx_route.c for a real-life example of a reader-writer spinlock. A
reader-writer lock called i px_rout es_| ock protects the IPX routing table from simultaneous access. Threads
that need to look up the routing table to forward packets request reader locks. Threads that need to add or
delete entries from the routing table acquire writer locks. This improves performance because there are usually
far more instances of routing table lookups than routing table updates.

Like regular spinlocks, reader-writer locks also have corresponding irq variants—namely, read_| ock_i rgsave(),
read_l ock_irqgrestore(),wite_|l ock_irqgsave(),and wite_|l ock_irqgrestore(). The semantics of these
functions are similar to those of regular spinlocks.

Sequence locks or seqglocks, introduced in the 2.6 kernel, are reader-writer locks where writers are favored over
readers. This is useful if write operations on a variable far outnumber read accesses. An example is the
jiffies_64 variable discussed earlier in this chapter. Writer threads do not wait for readers who may be inside
a critical section. Because of this, reader threads may discover that their entry inside a critical section has failed
and may need to retry:

u64 get jiffies_64(void) /* Defined in kernel/time.c */

{
unsi gned | ong seq;
ub4 ret;
do {
seq = read_seqbegi n( &ti me_I| ock);
ret = jiffies_64,
} while (read_seqretry(&xtime_|ock, seq));
return ret;



Writers protect critical regions using wite_seql ock() and wite_sequnl ock().

The 2.6 kernel introduced another mechanism called Read-Copy Update (RCU), which yields improved
performance when readers far outnumber writers. The basic idea is that reader threads can execute without
locking. Writer threads are more complex. They perform update operations on a copy of the data structure and
replace the pointer that readers see. The original copy is maintained until the next context switch on all CPUs to
ensure completion of all ongoing read operations. Be aware that using RCU is more involved than using the
primitives discussed thus far and should be used only if you are sure that it's the right tool for the job. RCU data
structures and interface functions are defined in include/linux/rcupdate.h. There is ample documentation in
Documentation/RCU/*.

For an RCU usage example, look at fs/dcache.c. On Linux, each file is associated with directory entry
information (stored in a structure called dentry), metadata information (stored in an inode), and actual data
(stored in data blocks). Each time you operate on a file, the components in the file path are parsed, and the
corresponding dentries are obtained. The dentries are kept cached in a data structure called the dcache, to
speed up future operations. At any time, the number of dcache lookups is much more than dcache updates, so
references to the dcache are protected using RCU primitives.

Debugging

Concurrency-related problems are generally hard to debug because they are usually difficult to reproduce. It's a
good idea to enable SMP (CONFI G_SMP) and preemption (CONFI G_PREEMPT) while compiling and testing your
code, even if your production kernel is going to run on a UP machine with preemption disabled. There is a kernel
configuration option under Kernel hacking called Spinlock and rw-lock debugging (CONFI G_DEBUG_SPI NLOCK)
that can help you catch some common spinlock errors. Also available are tools such as lockmeter
(http://oss.sgi.com/projects/lockmeter/) that collect lock-related statistics.

A common concurrency problem occurs when you forget to lock an access to a shared resource. This results in
different threads "racing" through that access in an unregulated manner. The problem, called a race condition,
might manifest in the form of occasional strange code behavior.

Another potential problem arises when you miss releasing held locks in certain code paths, resulting in
deadlocks. To understand this, consider the following example:

spi n_| ock( &yl ock) ; /* Acquire |ock */

[* ... Critical Section ... */

if (error) { /* This error condition occurs rarely */
return -EIQ /* Forgot to release the |ock! */

}

spi n_unl ock( &yl ock) ; /* Rel ease | ock */

After the occurrence of the error condition, any thread trying to acquire nyl ock gets deadlocked, and the kernel
might freeze.

If the problem first manifests months or years after you write the code, it'll be all the more tough to go back
and debug it. (There is a related debugging example in the section "Kdump™ in Chapter 21, "Debugging Device
Drivers.") To avoid such unpleasant encounters, concurrency logic should be designed when you architect your
software.
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Process Filesystem

The process filesystem (procfs) is a virtual filesystem that creates windows into the innards of the kernel. The
data you see when you browse procfs is generated by the kernel on-the-fly. Files in procfs are used to configure
kernel parameters, look at kernel structures, glean statistics from device drivers, and get general system
information.

Procfs is a pseudo filesystem. This means that files resident in procfs are not associated with physical storage
devices such as hard disks. Instead, data in those files is dynamically created on demand by the corresponding
entry points in the kernel. Because of this, file sizes in procfs get shown as zero. Procfs is usually mounted
under the /proc directory during kernel boot; you can see this by invoking the nount command.

To get a first feel of the capabilities of procfs, examine the contents of /proc/cpuinfo, /proc/meminfo,
/proc/interrupts, /proc/tty/driver/serial, /proc/bus/usb/devices, and /proc/stat. Certain kernel parameters can
be changed at runtime by writing to files under /proc/sys/. For example, you can change kernel pri nt k log
levels by echoing a new set of values to /proc/sys/kernel/printk. Many utilities (such as ps) and system
performance monitoring tools (such as sysstat) internally derive information from files residing under /proc.

Seq files, introduced in the 2.6 kernel, simplify large procfs operations. They are described in Appendix C, "Seq
Files."



Allocating Memory

Some device drivers have to be aware of the existence of memory zones. In addition, many drivers need the
services of memory-allocation functions. In this section, let's briefly discuss both.

The kernel organizes physical memory into pages. The page size depends on the architecture. On x86-based
machines, it's 4096 bytes. Each page in physical memory has a struct page (defined in
include/linux/mm_types.h) associated with it:

struct page {
unsi gned long flags; /* Page status */
atomi c_t _count; /* Reference count */
[* .00
void * virtual; /* Explained |ater on */

b

On 32-bit x86 systems, the default kernel configuration splits the available 4GB address space into a 3GB virtual
memory space for user processes and a 1GB space for the kernel, as shown in Figure 2.5. This imposes a 1GB
limit on the amount of physical memory that the kernel can handle. In reality, the limit is 896MB because
128MB of the address space is occupied by kernel data structures. You may increase this limit by changing the
3GB/1GB split during kernel configuration, but you will incur the displeasure of memory-intensive applications if
you reduce the virtual address space of user processes.

Figure 2.5. Default address space split on a 32-bit PC system.
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Kernel addresses that map the low 896MB differ from physical addresses by a constant offset and are called
logical addresses. With "high memory" support, the kernel can access memory beyond 896MB by generating
virtual addresses for those regions using special mappings. All logical addresses are kernel virtual addresses,
but not vice versa.



This leads us to the following kernel memory zones:

1. ZONE_DMA (<16MB), the zone used for Direct Memory Access (DMA). Because legacy ISA devices have 24
address lines and can access only the first 16MB, the kernel tries to dedicate this area for such devices.

2. ZONE_NORMAL (16MB to 896MB), the normally addressable region, also called low memory. The "virtual”
field in struct page for low memory pages contains the corresponding logical addresses.

3. ZONE_HI CH (>896MB), the space that the kernel can access only after mapping resident pages to regions
in ZONE_NORVMAL (using kmap() and kunmap() ). The corresponding kernel addresses are virtual and not
logical. The "virtual” field in struct page for high memory pages points to NULL if the page is not
kmapped.

kmal | oc() is a memory-allocation function that returns contiguous memory from ZONE_NORVAL. The prototype is
as follows:
void *kmal l oc(int count, int flags);

Where count is the number of bytes to allocate, and f| ags is a mode specifier. All supported flags are listed in
include/linux./gfp.h (gfp stands for get free pages), but these are the commonly used ones:

1. GFP_KERNEL Used by process context code to allocate memory. If this flag is specified, kmal | oc() is
allowed to go to sleep and wait for pages to get freed up.

2. GFP_ATOM C Used by interrupt context code to get hold of memory. In this mode, knal | oc() is not
allowed to sleep-wait for free pages, so the probability of successful allocation with GFP_ATOM C is lower
than with GFP_KERNEL.

Because memory returned by knmal | oc() retains the contents from its previous incarnation, there could be a
security risk if it's exposed to user space. To get zeroed kmalloced memory, use kzal | oc() .

If you need to allocate large memory buffers, and you don't require the memory to be physically contiguous,
use viral | oc() rather than kmal | oc() :

voi d *vmal | oc(unsigned | ong count);

Here count is the requested allocation size. The function returns kernel virtual addresses.

vmal | oc() enjoys bigger allocation size limits than knal | oc() but is slower and can't be called from interrupt
context. Moreover, you cannot use the physically discontiguous memory returned by vimal | oc() to perform
Direct Memory Access (DMA). High-performance network drivers commonly use viral | oc() to allocate large
descriptor rings when the device is opened.

The kernel offers more sophisticated memory allocation techniques. These include look aside buffers, slabs, and
mempools, which are beyond the scope of this chapter.






Looking at the Sources

Kernel boot starts with the execution of real mode assembly code living in the arch/x86/boot/ directory. Look at
arch/x86/kernel/setup_32.c to see how the protected mode kernel obtains information gleaned by the real
mode kernel.

The first boot message is printed by code residing in init/main.c. Dig inside init/calibrate.c to learn more about
BogoMIPS calibration and include/asm-your-arch/bugs.h for an insight into architecture-dependent checks.

Timer services in the kernel consist of architecture-dependent portions that live in arch/your-arch/kernel/ and
generic portions implemented in kernel/timer.c. For related definitions, look at the header files,
include/linux/time*.h.

jiffies is defined in linux/jiffies.h. The value for HZ is processor-dependent and can be found in include/asm-
your-arch/param.h.

Memory management sources reside in the top-level mm/ directory.
Table 2.1 contains a summary of the main data structures used in this chapter and the location of their

definitions in the source tree. Table 2.2 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 2.1. Summary of Data Structures

Data Structure Location Description

Hz include/asm-your-arch/param.h Number of times the system timer ticks
in 1 second

| oops_per _jiffy init/main.c Number of times the processor executes

an internal delay-loop in 1 jiffy

timer_list include/linux/timer.h Used to hold the address of a routine
that you want to execute at some point
in the future

tinmeval include/linux/time.h Timestamp

spi nl ock_t include/linux/spinlock_types.h A busy-locking mechanism to ensure that
only a single thread enters a critical
section

semaphore include/asm-your- A sleep-locking mechanism that allows a

arch/semaphore.h predetermined number of users to enter

a critical section

mut ex include/linux/mutex.h The new interface that replaces
semaphor e

rw ock_t include/linux/spinlock_types.h Reader-writer spinlock

page include/linux/mm_types.h Kernel's representation of a physical

memory page

Table 2.2. Summary of Kernel Programming Interfaces



Kernel Interface

Location

Description

time_after()
time_after_eq()
time_before()

i me_before_eq()

schedul e_t i meout ()

wai t _event _tineout ()

DEFI NE_TI MER()
init_timer()

add_timer()

nmod_ti mer ()
ti mer_pendi ng()
udel ay()

rdtsc()

do_getti neof day()

| ocal _irqg_disabl e()

| ocal _i rq_enabl e()

| ocal _irq_save()

local _irq_restore()

spi n_I ock()

spi n_unl ock()

spin_l ock_i rgsave()

spin_unl ock_irqgrestore()

DEFI NE_MUTEX( )
mut ex_i nit ()

nmut ex_| ock()

include/linux/jiffies.h

kernel/timer.c

include/linux/wait.h

include/linux/timer.h
kernel/timer.c

include/linux/timer.h

kernel/timer.c
include/linux/timer.h

include/asm-your-
arch/delay.h arch/your-
arch/lib/delay.c

include/asm-x86/msr.h

kernel/time.c

include/asm-your-
arch/system.h

include/asm-your-
arch/system.h

include/asm-your-
arch/system.h

include/asm-your-
arch/system.h

include/linux/spinlock.h
kernel/spinlock.c

include/linux/spinlock.h

include/linux/spinlock.h
kernel/spinlock.c

include/linux/spinlock.h
kernel/spinlock.c

include/linux/mutex.h
include/linux/mutex.h

kernel/mutex.c

Compares the current value of ji ffi es with a
specified future value

Schedules a process to run after a specified
timeout has elapsed

Resumes execution if a specified condition
becomes true or if a timeout occurs

Statically defines a timer
Dynamically defines a timer

Schedules the timer for execution after the
timeout has elapsed

Changes timer expiration
Checks if a timer is pending at the moment
Busy-waits for the specified number of

microseconds

Gets the value of the TSC on Pentium-compatible
processors

Obtains wall time

Disables interrupts on the local CPU

Enables interrupts on the local CPU

Saves interrupt state and disables interrupts

Restores interrupt state to what it was when the
matching | ocal _i rq_save() was called

Acquires a spinlock.

Releases a spinlock

Saves interrupt state, disables interrupts and
preemption on local CPU, and locks their critical
section to regulate access by other CPUs

Restores interrupt state and preemption and
releases the lock

Statically declares a mutex
Dynamically declares a mutex

Acquires a mutex



Kernel Interface Location Description

mut ex_unl ock() kernel/mutex.c Releases a mutex

DECLARE_MUTEX() include/asm-your- Statically declares a semaphore
arch/semaphore.h

init_MJTEX() include/asm-your- Dynamically declares a semaphore
arch/semaphore.h

up() arch/your- Acquires a semaphore
arch/kernel/semaphore.c

down() arch/your- Releases a semaphore
arch/kernel/semaphore.c

atom c_inc() include/asm-your- Atomic operators to perform lightweight

atom c_inc_and_test () arch/atomic.h operations

at omi c_dec()

atomi c_dec_and_test ()
clear_bit()

set_bit()

test_bit()

test _and_set_bit()

read_I| ock() include/linux/spinlock.h  Reader-writer variant of spinlocks
read_unl ock() kernel/spinlock.c

read_l ock_irgsave()

read_| ock_irqgrestore()

wite | ock()

write_unlock()

wite_l ock_irqgsave()

wite |ock_irqrestore()

down_read() kernel/rwsem.c Reader-writer variant of semaphores
up_read()

down_write()

up_wite()

read_seqgbegi n() include/linux/seglock.h  Seglock operations

read_seqretry()
write_seqgl ock()
write_sequnl ock()

kmal | oc() include/linux/slab.h Allocates physically contiguous memory from
mm/slab.c ZONE_NORMAL

kzal I oc() include/linux/slab.h Obtains zeroed kmalloced memory
mm/util.c

kfree() mm/slab.c Releases kmalloced memory

vmal | oc() mm/vmalloc.c Allocates virtually contiguous memory that is not

guaranteed to be physically contiguous.






Chapter 3. Kernel Facilities
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In this chapter, let's look at some kernel facilities that are useful components in a driver
developer's toolbox. We start this chapter by looking at a kernel facility that is similar to user
processes; kernel threads are programming abstractions oriented toward concurrent processing.

The kernel offers several helper interfaces that simplify your code, eliminate redundancies,
increase code readability, and help in long-term maintenance. We will look at linked lists, hash
lists, work queues, notifier chains, completion functions, and error-handling aids. These helpers
are bug free and optimized, so your driver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to implement background tasks inside the kernel. The task can be busy handling
asynchronous events or sleep-waiting for an event to occur. Kernel threads are similar to user processes, except
that they live in kernel space and have access to kernel functions and data structures. Like user processes,
kernel threads have the illusion of monopolizing the processor because of preemptive scheduling. Many device
drivers utilize the services of kernel threads to implement assistant or helper tasks. For example, the khubd
kernel thread, which is part of the Linux USB driver core (covered in Chapter 11, "Universal Serial Bus")
monitors USB hubs and configures USB devices when they are hot-plugged into the system.

Creating a Kernel Thread

Let's learn about kernel threads with the help of an example. While developing the example thread, you will also
learn about kernel concepts such as process states, wait queues, and user mode helpers. When you are
comfortable with kernel threads, you can use them as a test vehicle for carrying out various experiments within
the kernel.

Assume that you would like the kernel to asynchronously invoke a user mode program to send you an email or
pager alert, whenever it senses that the health of certain key kernel data structures is deteriorating. (For
instance, free space in network receive buffers has dipped below a low watermark.)



This is a candidate for being implemented as a kernel thread for the following reasons:

e It's a background task because it has to wait for asynchronous events.

e It needs access to kernel data structures because the actual detection of events is done by other parts of
the kernel.

e It has to invoke a user mode helper program, which is a time-consuming operation.

Built-In Kernel Threads

To see the kernel threads (also called kernel processes) running on your system, run the ps
command. Names of kernel threads are surrounded by square brackets:

bash> ps -ef

u D PID PPID C STIME TTY TI ME CVMD

r oot 1 0 0 22:36 7 00:00:00 init [3]

r oot 2 0 0 22:36 ? 00: 00: 00 [kt hreadd]
r oot 3 2 0 22:36 7 00: 00: 00 [ksoftirqd/ 0]
r oot 4 2 0 22:36 7 00: 00: 00 [events/ O]
r oot 38 2 0 22:36 ? 00: 00: 00 [ pdfl ush]

r oot 39 2 0 22:36 ? 00: 00: 00 [ pdfl ush]

r oot 29 2 0 22:36 7 00: 00: 00 [ khubd]

r oot 695 2 0 22:36 7 00: 00: 00 [kj ournal d]
r oot 3914 2 022:37 7 00: 00: 00 [ nfsd]

r oot 3915 2 022:37 7 00: 00: 00 [ nfsd]

r oot 4015 3364 0 22:55 tty3 00: 00: 00 -bash

r oot 4066 4015 0 22:59 tty3 00: 00: 00 ps -ef

The [ksoftirqd/0] kernel thread is an aid to implement softirgs. Softirgs are raised by interrupt
handlers to request "bottom half" processing of portions of the handler whose execution can be
deferred. We take a detailed look at bottom halves and softirgs in Chapter 4, "Laying the
Groundwork," but the basic idea here is to allow as little code as possible to be present inside
interrupt handlers. Having small interrupt handlers reduces interrupt-off times in the system,
resulting in lower latencies. Ksoftirqd's job is to ensure that a high load of softirgs neither starves
the softirgs nor overwhelms the system. On Symmetric Multi Processing (SMP) machines where
multiple thread instances can run on different processors in parallel, one instance of ksoftirqd is
created per CPU to improve throughput (ksoftirqd/n, where n is the CPU number).

The events/n threads (where n is the CPU number) help implement work queues, which are
another way of deferring work in the kernel. Parts of the kernel that desire deferred execution of
work can either create their own work queue or make use of the default events/n worker thread.
Work queues are also dissected in Chapter 4.

The task of the pdflush kernel thread is to flush out dirty pages from the page cache. The page
cache buffers accesses to the disk. To improve performance, actual writes to the disk are delayed
until the pdflush daemon writes out dirtied data to disk. This is done if the available free memory
dips below a threshold, or if the page has remained dirty for a sufficiently long time. In 2.4
kernels, these two tasks were respectively performed by separate kernel threads, bdflush and




kupdated. You might have noticed two instances of pdflush in the ps output. A new instance is
created if the kernel senses that existing instances have their hands full, servicing disk queues.
This improves throughput, especially if your system has multiple disks and many of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which is
used by filesystems such as EXT3.

The Linux Network File System (NFS) server is implemented using a set of kernel threads named
nfsd.

Our example kernel thread relinquishes the processor until it gets woken up by parts of the kernel responsible
for monitoring the data structures of interest. When awake, it invokes a user mode helper program and passes
appropriate identity codes in its environment.

To create a kernel thread, use kernel _t hread() :

ret = kernel _thread(mykthread, NULL,
CLONE_FS | CLONE_FILES | CLONE_SI GHAND | S| GCHLD);

The flags specify the resources to be shared between the parent and child threads. CLONE_FI LES specifies that
open files are to be shared, and CLONE_SI GHAND requests that signal handlers be shared.

Listing 3.1 shows the example implementation. Because kernel threads usually act as helpers to device drivers,
they are created when the driver is initialized. In this case, however, the example thread can be created from
any suitable place, for instance, init/main.c.

The thread starts by invoking daenoni ze() , which performs initial housekeeping and changes the parent of the
calling thread to a kernel thread called kthreadd. Each Linux thread has a single parent. If a parent process dies
without waiting for its child to exit, the child becomes a zombie process and wastes resources. Reparenting the
child to kthreadd, avoids this and ensures proper cleanup when the thread exits.[1]

[1] In 2.6.21 and earlier kernels, daenoni ze() reparents the calling thread to the init task by calling reparent _to_init().

Because daenoni ze() blocks all signals by default, use al | ow_si gnal () to enable delivery if your thread
desires to handle a particular signal. There are no signal handlers inside the kernel, so use si gnal _pendi ng()
to check for signals and take appropriate action. For debugging purposes, the code in Listing 3.1 requests
delivery of SI &I LL and dies if it's received.

kernel _t hread() is depreciated in favor of the higher-level kthread API, which is built over the former. We will
look at kthreads later on.

Listing 3.1. Implementing a Kernel Thread



Code View:
stati c DECLARE_WAI T_QUEUE_HEAD( nyevent _wai t queue) ;
rw ock_t myevent _I ock;
extern unsigned int nyevent_id; /* Holds the identity of the
troubl ed data structure.
Popul ated | ater on */
static int nmykthread(void *unused)
{
unsigned int event_id = 0;
DECLARE_WAI TQUEUE(wai t, current);
/* Becone a kernel thread w thout attached user resources */
daenoni ze(" nykt hread");

/* Request delivery of SICGKILL */
al I ow_si gnal (SI &I LL);

/* The thread sleeps on this wait queue until it's
woken up by parts of the kernel in charge of sensing
the health of data structures of interest */

add_wai t _queue( &ryevent _wai t queue, &wait);

for (5;) {
/* Relinquish the processor until the event occurs */
set _current_stat e( TASK_| NTERRUPTI BLE) ;
schedule(); /* Alow other parts of the kernel to run */
/* Die if |I receive SIGKILL */
i f (signal_pending(current)) break;
/* Control gets here when the thread is woken up */
read_| ock( &myevent _| ock); /* Critical section starts */
if (nyevent_id) { /* GQuard agai nst spurious wakeups */
event _id = nyevent _id;
read_unl ock( &yevent | ock); /* Critical section ends */
/* I nvoke the registered user node hel per and
pass the identity code in its environment */
run_unode_handl er (event _id); /* Expanded |l ater on */
} else {
read_unl ock( &yevent _| ock) ;
}
}

set _current _state( TASK_RUNNI NG ;
renove_wai t _queue( &ryevent _wai t queue, &wait);
return O;

If you compile and run this as part of the kernel, you can see the newly created thread, mykthread, in the ps
output:

bash> ps -ef

u D PID PPID C STIME TTY TI ME CVMD
r oot 1 0 0 21:56 7 00:00:00 init [3]
r oot 2 10 22:36 ? 00: 00: 00 [ksoftirqd/ 0]

r oot 111 10 21:56 ? 00: 00: 00 [ nykt hr ead]



Before we delve further into the thread implementation, let's write a code snippet that monitors the health of a
data structure of interest and awakens mykthread if a problem condition is detected:

/* Executed by parts of the kernel that own the
data structures whose health you want to nonitor */
[* o0 %]

if (my_key datastructure | ooks troubled) {
wite_ | ock(&mwyevent _|ock); /* Serialize */
/* Fill in the identity of the data structure */
myevent _id = datastructure_id;

write_unl ock(&yevent _| ock);

/* \Wake up nykt hread */
wake_up_interrupti bl e( &yevent wai t queue) ;

}

[* o0 *]

Listing 3.1 executes in process context, whereas the preceding snippet runs from either process or interrupt
context. Process and interrupt contexts communicate via kernel data structures. Our example uses nyevent _i d

and nyevent _wai t queue for this communication. myevent _i d contains the identity of the data structure in
trouble. Access to nmyevent _i d is serialized using locks.

Note that kernel threads are preemptible only if CONFI G_PREEMPT is turned on at compile time. If

CONFI G_PREEMPT is off, or if you are still running a 2.4 kernel without the preemption patch, your thread will
freeze the system if it does not go to sleep. If you comment out schedul e() in Listing 3.1 and disable
CONFI G_PREEMPT in your kernel configuration, your system will lock up.

You will learn how to obtain soft real-time responses from kernel threads when we discuss scheduling policies in
Chapter 19, "Drivers in User Space."

Process States and Wait Queues
Here's the code region from Listing 3.1 that puts mykthread to sleep while waiting for events:

add_wai t _queue( &rmyevent _wai t queue, &wait);

for (;;) {
[* ... 0%
set _current _stat e( TASK | NTERRUPTI BLE) ;
schedul e(); /* Relinquish the processor */

/* Point A */

[* ... 0%
}
set _current _stat e( TASK_RUNNI NG) ;

renove_wait _queue( &ryevent _wai t queue, &wait);

The operation of the preceding snippet is based on two concepts: wait queues and process states.



Wait queues hold threads that need to wait for an event or a system resource. Threads in a wait queue go to
sleep until they are woken up by another thread or an interrupt handler that is responsible for detecting the
event. Queuing and dequeuing are respectively done using add_wai t _queue() and renove_wai t _queue(), and
waking up queued tasks is accomplished via wake_up_i nterruptible().

A kernel thread (or a normal process) can be in any of the following process states: running, interruptible,
uninterruptible, zombie, stopped, traced, or dead. These states are defined in include/linux/sched.h:

e A process in the running state (TASK_RUNNI NG) is in the scheduler run queue and is a candidate for
getting CPU time allotted by the scheduler.

e A task in the interruptible state (TASK | NTERRUPTI BLE) is waiting for an event to occur and is not in the
scheduler run queue. When the task gets woken up, or if a signal is delivered to it, it re-enters the run
queue.

¢ The uninterruptible state (TASK_UNI NTERRUPTI BLE) is similar to the interruptible state except that
receipt of a signal will not put the task back into the run queue.

e A stopped task (TASK_STOPPED) has stopped execution due to receipt of certain signals.

e If an application such as strace is using the ptrace support in the kernel to intercept a task, it'll be in the
traced state (TASK_TRACED).

e A task in the zombie state (EXI T_ZOMBI E) has terminated, but its parent did not wait for the task to
complete. An exiting task is either in the EXI T_ZOWBI E state or the dead (EXI T_DEAD) state.

You can use set _current_state() to set the run state of your kernel thread.

Let's now turn back to the preceding code snippet. mykthread sleeps on a wait queue (myevent _wai t queue) and
changes its state to TASK | NTERRUPTI BLE, signaling its desire to opt out of the scheduler run queue. The call to
schedul e() asks the scheduler to choose and run a new task from its run queue. When code responsible for
health monitoring wakes up mykthread using wake_up_i nterrupti bl e( &ryevent _wai t queue) , the thread is put
back into the scheduler run queue. The process state also gets simultaneously changed to TASK_RUNNI NG, so
there is no race condition even if the wake up occurs between the time the task state is set to

TASK_| NTERRUPTI BLE and the time schedul e() is called. The thread also gets back into the run queue if a

SI &I LL signal is delivered to it. When the scheduler subsequently picks mykthread from the run queue,
execution resumes from Point A.

User Mode Helpers
Mykthread invokes r un_unode_handl er () in Listing 3.1 to notify user space about detected events:

Code View:
/* Called fromListing 3.1 */
static void
run_unode_handl er (i nt event _i d)
{
int i =0;
char *argv[2], *envp[4], *buffer = NULL;



i nt val ue;

argv[i++] = myevent _handler; /* Defined in
kernel / sysctl.c */

/* Fill inthe id corresponding to the data structure
in trouble */

if (!(buffer = kmalloc(32, GFP_KERNEL))) return;

sprintf(buffer, "TROUBLED DS=%l", event_id);

/* 1f no user node handlers are found, return */
if (largv[O]) return; argv[i] = O;

/* Prepare the environment for /path/to/hel per */

i =0

envp[i++] = "HOMVE=/";

envp[i++] = "PATH=/ sbin:/usr/sbin:/bin:/usr/bin";
envp[i++] = buffer; envp[i] = 0;

/* Execute the user node program /path/to/hel per */
val ue = cal |l _usernodehel per(argv[0], argv, envp, 0);

/* Check return values */
kfree(buffer);

The kernel supports a mechanism for requesting user mode programs to help perform certain functions.
run_unode_handl er () uses this facility by invoking cal | _user nodehel per ().

You have to register the user mode program invoked by run_unode_handl er () via a node in the /proc/sys/
directory. To do so, make sure that CONFI G_SYSCTL (files that are part of the /proc/sys/ directory are
collectively known as the sysctl interface) is enabled in your kernel configuration and add an entry to the
ker n_t abl e array in kernel/sysctl.c:

{
.ctl_name = KERN_MYEVENT_HANDLER, /* Define in
i nclude/linux/sysctl.h */
. procnane = "myevent _handl er",
.data = &myevent _handl er,
. max| en = 256,
. node = 0644,
. proc_handl er = &proc_dostring,
. strategy = &sysctl _string,
8

This creates the node /proc/sys/kernel/myevent_handler in the process filesystem. To register your user mode
helper, do the following:

bash> echo /path/to/ hel per > /proc/sys/kernel/nmyevent _handl er

This results in /path/to/helper getting executed when mykthread invokes r un_unode_handl er () .



Mykthread passes the identity of the troubled kernel data structure to the user mode helper through the
environment variable TROUBLED DS. The helper can be a simple script like the following that sends you an email
alert containing the information it gleaned from its environment:

bash> cat /path/to/ hel per
#!/ bi n/ bash
echo Kernel datastructure $TROUBLED DS is in trouble | mail -s Alert root

cal | _usernmodehel per () has to be executed from process context and runs with root privileges. It's

implemented using a work queue, which we will soon discuss.



Chapter 3. Kernel Facilities
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In this chapter, let's look at some kernel facilities that are useful components in a driver
developer's toolbox. We start this chapter by looking at a kernel facility that is similar to user
processes; kernel threads are programming abstractions oriented toward concurrent processing.

The kernel offers several helper interfaces that simplify your code, eliminate redundancies,
increase code readability, and help in long-term maintenance. We will look at linked lists, hash
lists, work queues, notifier chains, completion functions, and error-handling aids. These helpers
are bug free and optimized, so your driver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to implement background tasks inside the kernel. The task can be busy handling
asynchronous events or sleep-waiting for an event to occur. Kernel threads are similar to user processes, except
that they live in kernel space and have access to kernel functions and data structures. Like user processes,
kernel threads have the illusion of monopolizing the processor because of preemptive scheduling. Many device
drivers utilize the services of kernel threads to implement assistant or helper tasks. For example, the khubd
kernel thread, which is part of the Linux USB driver core (covered in Chapter 11, "Universal Serial Bus")
monitors USB hubs and configures USB devices when they are hot-plugged into the system.

Creating a Kernel Thread

Let's learn about kernel threads with the help of an example. While developing the example thread, you will also
learn about kernel concepts such as process states, wait queues, and user mode helpers. When you are
comfortable with kernel threads, you can use them as a test vehicle for carrying out various experiments within
the kernel.

Assume that you would like the kernel to asynchronously invoke a user mode program to send you an email or
pager alert, whenever it senses that the health of certain key kernel data structures is deteriorating. (For
instance, free space in network receive buffers has dipped below a low watermark.)



This is a candidate for being implemented as a kernel thread for the following reasons:

e It's a background task because it has to wait for asynchronous events.

e It needs access to kernel data structures because the actual detection of events is done by other parts of
the kernel.

e It has to invoke a user mode helper program, which is a time-consuming operation.

Built-In Kernel Threads

To see the kernel threads (also called kernel processes) running on your system, run the ps
command. Names of kernel threads are surrounded by square brackets:

bash> ps -ef

u D PID PPID C STIME TTY TI ME CVMD

r oot 1 0 0 22:36 7 00:00:00 init [3]

r oot 2 0 0 22:36 ? 00: 00: 00 [kt hreadd]
r oot 3 2 0 22:36 7 00: 00: 00 [ksoftirqd/ 0]
r oot 4 2 0 22:36 7 00: 00: 00 [events/ O]
r oot 38 2 0 22:36 ? 00: 00: 00 [ pdfl ush]

r oot 39 2 0 22:36 ? 00: 00: 00 [ pdfl ush]

r oot 29 2 0 22:36 7 00: 00: 00 [ khubd]

r oot 695 2 0 22:36 7 00: 00: 00 [kj ournal d]
r oot 3914 2 022:37 7 00: 00: 00 [ nfsd]

r oot 3915 2 022:37 7 00: 00: 00 [ nfsd]

r oot 4015 3364 0 22:55 tty3 00: 00: 00 -bash

r oot 4066 4015 0 22:59 tty3 00: 00: 00 ps -ef

The [ksoftirqd/0] kernel thread is an aid to implement softirgs. Softirgs are raised by interrupt
handlers to request "bottom half" processing of portions of the handler whose execution can be
deferred. We take a detailed look at bottom halves and softirgs in Chapter 4, "Laying the
Groundwork," but the basic idea here is to allow as little code as possible to be present inside
interrupt handlers. Having small interrupt handlers reduces interrupt-off times in the system,
resulting in lower latencies. Ksoftirqd's job is to ensure that a high load of softirgs neither starves
the softirgs nor overwhelms the system. On Symmetric Multi Processing (SMP) machines where
multiple thread instances can run on different processors in parallel, one instance of ksoftirqd is
created per CPU to improve throughput (ksoftirqd/n, where n is the CPU number).

The events/n threads (where n is the CPU number) help implement work queues, which are
another way of deferring work in the kernel. Parts of the kernel that desire deferred execution of
work can either create their own work queue or make use of the default events/n worker thread.
Work queues are also dissected in Chapter 4.

The task of the pdflush kernel thread is to flush out dirty pages from the page cache. The page
cache buffers accesses to the disk. To improve performance, actual writes to the disk are delayed
until the pdflush daemon writes out dirtied data to disk. This is done if the available free memory
dips below a threshold, or if the page has remained dirty for a sufficiently long time. In 2.4
kernels, these two tasks were respectively performed by separate kernel threads, bdflush and




kupdated. You might have noticed two instances of pdflush in the ps output. A new instance is
created if the kernel senses that existing instances have their hands full, servicing disk queues.
This improves throughput, especially if your system has multiple disks and many of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which is
used by filesystems such as EXT3.

The Linux Network File System (NFS) server is implemented using a set of kernel threads named
nfsd.

Our example kernel thread relinquishes the processor until it gets woken up by parts of the kernel responsible
for monitoring the data structures of interest. When awake, it invokes a user mode helper program and passes
appropriate identity codes in its environment.

To create a kernel thread, use kernel _t hread() :

ret = kernel _thread(mykthread, NULL,
CLONE_FS | CLONE_FILES | CLONE_SI GHAND | S| GCHLD);

The flags specify the resources to be shared between the parent and child threads. CLONE_FI LES specifies that
open files are to be shared, and CLONE_SI GHAND requests that signal handlers be shared.

Listing 3.1 shows the example implementation. Because kernel threads usually act as helpers to device drivers,
they are created when the driver is initialized. In this case, however, the example thread can be created from
any suitable place, for instance, init/main.c.

The thread starts by invoking daenoni ze() , which performs initial housekeeping and changes the parent of the
calling thread to a kernel thread called kthreadd. Each Linux thread has a single parent. If a parent process dies
without waiting for its child to exit, the child becomes a zombie process and wastes resources. Reparenting the
child to kthreadd, avoids this and ensures proper cleanup when the thread exits.[1]

[1] In 2.6.21 and earlier kernels, daenoni ze() reparents the calling thread to the init task by calling reparent _to_init().

Because daenoni ze() blocks all signals by default, use al | ow_si gnal () to enable delivery if your thread
desires to handle a particular signal. There are no signal handlers inside the kernel, so use si gnal _pendi ng()
to check for signals and take appropriate action. For debugging purposes, the code in Listing 3.1 requests
delivery of SI &I LL and dies if it's received.

kernel _t hread() is depreciated in favor of the higher-level kthread API, which is built over the former. We will
look at kthreads later on.

Listing 3.1. Implementing a Kernel Thread



Code View:
stati c DECLARE_WAI T_QUEUE_HEAD( nyevent _wai t queue) ;
rw ock_t myevent _I ock;
extern unsigned int nyevent_id; /* Holds the identity of the
troubl ed data structure.
Popul ated | ater on */
static int nmykthread(void *unused)
{
unsigned int event_id = 0;
DECLARE_WAI TQUEUE(wai t, current);
/* Becone a kernel thread w thout attached user resources */
daenoni ze(" nykt hread");

/* Request delivery of SICGKILL */
al I ow_si gnal (SI &I LL);

/* The thread sleeps on this wait queue until it's
woken up by parts of the kernel in charge of sensing
the health of data structures of interest */

add_wai t _queue( &ryevent _wai t queue, &wait);

for (5;) {
/* Relinquish the processor until the event occurs */
set _current_stat e( TASK_| NTERRUPTI BLE) ;
schedule(); /* Alow other parts of the kernel to run */
/* Die if |I receive SIGKILL */
i f (signal_pending(current)) break;
/* Control gets here when the thread is woken up */
read_| ock( &myevent _| ock); /* Critical section starts */
if (nyevent_id) { /* GQuard agai nst spurious wakeups */
event _id = nyevent _id;
read_unl ock( &yevent | ock); /* Critical section ends */
/* I nvoke the registered user node hel per and
pass the identity code in its environment */
run_unode_handl er (event _id); /* Expanded |l ater on */
} else {
read_unl ock( &yevent _| ock) ;
}
}

set _current _state( TASK_RUNNI NG ;
renove_wai t _queue( &ryevent _wai t queue, &wait);
return O;

If you compile and run this as part of the kernel, you can see the newly created thread, mykthread, in the ps
output:

bash> ps -ef

u D PID PPID C STIME TTY TI ME CVMD
r oot 1 0 0 21:56 7 00:00:00 init [3]
r oot 2 10 22:36 ? 00: 00: 00 [ksoftirqd/ 0]

r oot 111 10 21:56 ? 00: 00: 00 [ nykt hr ead]



Before we delve further into the thread implementation, let's write a code snippet that monitors the health of a
data structure of interest and awakens mykthread if a problem condition is detected:

/* Executed by parts of the kernel that own the
data structures whose health you want to nonitor */
[* o0 %]

if (my_key datastructure | ooks troubled) {
wite_ | ock(&mwyevent _|ock); /* Serialize */
/* Fill in the identity of the data structure */
myevent _id = datastructure_id;

write_unl ock(&yevent _| ock);

/* \Wake up nykt hread */
wake_up_interrupti bl e( &yevent wai t queue) ;

}

[* o0 *]

Listing 3.1 executes in process context, whereas the preceding snippet runs from either process or interrupt
context. Process and interrupt contexts communicate via kernel data structures. Our example uses nyevent _i d

and nyevent _wai t queue for this communication. myevent _i d contains the identity of the data structure in
trouble. Access to nmyevent _i d is serialized using locks.

Note that kernel threads are preemptible only if CONFI G_PREEMPT is turned on at compile time. If

CONFI G_PREEMPT is off, or if you are still running a 2.4 kernel without the preemption patch, your thread will
freeze the system if it does not go to sleep. If you comment out schedul e() in Listing 3.1 and disable
CONFI G_PREEMPT in your kernel configuration, your system will lock up.

You will learn how to obtain soft real-time responses from kernel threads when we discuss scheduling policies in
Chapter 19, "Drivers in User Space."

Process States and Wait Queues
Here's the code region from Listing 3.1 that puts mykthread to sleep while waiting for events:

add_wai t _queue( &rmyevent _wai t queue, &wait);

for (;;) {
[* ... 0%
set _current _stat e( TASK | NTERRUPTI BLE) ;
schedul e(); /* Relinquish the processor */

/* Point A */

[* ... 0%
}
set _current _stat e( TASK_RUNNI NG) ;

renove_wait _queue( &ryevent _wai t queue, &wait);

The operation of the preceding snippet is based on two concepts: wait queues and process states.



Wait queues hold threads that need to wait for an event or a system resource. Threads in a wait queue go to
sleep until they are woken up by another thread or an interrupt handler that is responsible for detecting the
event. Queuing and dequeuing are respectively done using add_wai t _queue() and renove_wai t _queue(), and
waking up queued tasks is accomplished via wake_up_i nterruptible().

A kernel thread (or a normal process) can be in any of the following process states: running, interruptible,
uninterruptible, zombie, stopped, traced, or dead. These states are defined in include/linux/sched.h:

e A process in the running state (TASK_RUNNI NG) is in the scheduler run queue and is a candidate for
getting CPU time allotted by the scheduler.

e A task in the interruptible state (TASK | NTERRUPTI BLE) is waiting for an event to occur and is not in the
scheduler run queue. When the task gets woken up, or if a signal is delivered to it, it re-enters the run
queue.

¢ The uninterruptible state (TASK_UNI NTERRUPTI BLE) is similar to the interruptible state except that
receipt of a signal will not put the task back into the run queue.

e A stopped task (TASK_STOPPED) has stopped execution due to receipt of certain signals.

e If an application such as strace is using the ptrace support in the kernel to intercept a task, it'll be in the
traced state (TASK_TRACED).

e A task in the zombie state (EXI T_ZOMBI E) has terminated, but its parent did not wait for the task to
complete. An exiting task is either in the EXI T_ZOWBI E state or the dead (EXI T_DEAD) state.

You can use set _current_state() to set the run state of your kernel thread.

Let's now turn back to the preceding code snippet. mykthread sleeps on a wait queue (myevent _wai t queue) and
changes its state to TASK | NTERRUPTI BLE, signaling its desire to opt out of the scheduler run queue. The call to
schedul e() asks the scheduler to choose and run a new task from its run queue. When code responsible for
health monitoring wakes up mykthread using wake_up_i nterrupti bl e( &ryevent _wai t queue) , the thread is put
back into the scheduler run queue. The process state also gets simultaneously changed to TASK_RUNNI NG, so
there is no race condition even if the wake up occurs between the time the task state is set to

TASK_| NTERRUPTI BLE and the time schedul e() is called. The thread also gets back into the run queue if a

SI &I LL signal is delivered to it. When the scheduler subsequently picks mykthread from the run queue,
execution resumes from Point A.

User Mode Helpers
Mykthread invokes r un_unode_handl er () in Listing 3.1 to notify user space about detected events:

Code View:
/* Called fromListing 3.1 */
static void
run_unode_handl er (i nt event _i d)
{
int i =0;
char *argv[2], *envp[4], *buffer = NULL;



i nt val ue;

argv[i++] = myevent _handler; /* Defined in
kernel / sysctl.c */

/* Fill inthe id corresponding to the data structure
in trouble */

if (!(buffer = kmalloc(32, GFP_KERNEL))) return;

sprintf(buffer, "TROUBLED DS=%l", event_id);

/* 1f no user node handlers are found, return */
if (largv[O]) return; argv[i] = O;

/* Prepare the environment for /path/to/hel per */

i =0

envp[i++] = "HOMVE=/";

envp[i++] = "PATH=/ sbin:/usr/sbin:/bin:/usr/bin";
envp[i++] = buffer; envp[i] = 0;

/* Execute the user node program /path/to/hel per */
val ue = cal |l _usernodehel per(argv[0], argv, envp, 0);

/* Check return values */
kfree(buffer);

The kernel supports a mechanism for requesting user mode programs to help perform certain functions.
run_unode_handl er () uses this facility by invoking cal | _user nodehel per ().

You have to register the user mode program invoked by run_unode_handl er () via a node in the /proc/sys/
directory. To do so, make sure that CONFI G_SYSCTL (files that are part of the /proc/sys/ directory are
collectively known as the sysctl interface) is enabled in your kernel configuration and add an entry to the
ker n_t abl e array in kernel/sysctl.c:

{
.ctl_name = KERN_MYEVENT_HANDLER, /* Define in
i nclude/linux/sysctl.h */
. procnane = "myevent _handl er",
.data = &myevent _handl er,
. max| en = 256,
. node = 0644,
. proc_handl er = &proc_dostring,
. strategy = &sysctl _string,
8

This creates the node /proc/sys/kernel/myevent_handler in the process filesystem. To register your user mode
helper, do the following:

bash> echo /path/to/ hel per > /proc/sys/kernel/nmyevent _handl er

This results in /path/to/helper getting executed when mykthread invokes r un_unode_handl er () .



Mykthread passes the identity of the troubled kernel data structure to the user mode helper through the
environment variable TROUBLED DS. The helper can be a simple script like the following that sends you an email
alert containing the information it gleaned from its environment:

bash> cat /path/to/ hel per
#!/ bi n/ bash
echo Kernel datastructure $TROUBLED DS is in trouble | mail -s Alert root

cal | _usernmodehel per () has to be executed from process context and runs with root privileges. It's

implemented using a work queue, which we will soon discuss.



Helper Interfaces

Several useful helper interfaces exist in the kernel to make life easier for device driver developers. One example
is the implementation of the doubly linked list library. Many drivers need to maintain and manipulate linked lists
of data structures. The kernel's list interface routines eliminate the need for chasing list pointers and debugging
messy problems related to list maintenance. Let's learn to use helper interfaces such as lists, hlists, work
queues, completion functions, notifier blocks, and kthreads.

There are equivalent ways to do what the helper facilities offer. You can, for example, implement your own list
manipulation routines instead of using the list library, or use kernel threads to defer work instead of submitting
it to work queues. Using standard kernel helper interfaces, however, simplifies your code, weeds out
redundancies from the kernel, increases code readability, and helps long-term maintenance.

Because the kernel is vast, you can always find parts that do not yet take advantage of these helper
mechanisms, so updating those code regions might be a good way to start contributing to kernel
development.

Linked Lists

To weave doubly linked lists of data structures, use the functions provided in include/linux/list.h. Essentially,
you embed a struct |ist_head inside your data structure:

#include <linux/list.h>

struct |ist_head {
struct list_head *next, *prev;

}s

struct nydatastructure {
struct list_head nylist; /* Enbed */
[* o0 % /* Actual Fields */

b

nyl i st is the link that chains different instances of nydat ast ruct ur e. If you have multiple | i st _heads
embedded inside mydat ast r uct ur e, each of them constitutes a link that renders nydat ast r uct ur e a member of
a new list. You can use the list library to add or delete membership from individual lists.

To get the lay of the land before the detail, let's summarize the linked list programming interface offered by the

list library. This is done in Table 3.1.

Table 3.1. Linked List Manipulation Functions
Function Purpose

I NI T_LI ST_HEAIX ) Initializes the list head

list_add() Adds an element after the list head



Function Purpose

list_add_tail () Adds an element to the tail of the list
list_del() Deletes an element from the list
list_replace() Replaces an element in the list with another
list_entry() Loops through all nodes in the list
list_for_each_entry()/ Simpler list iteration interfaces

list_for_each_entry_safe()

list_emty() Checks whether there are any elements in the list

list_splice() Joins one list with another

To illustrate list usage, let's implement an example. The example also serves as a foundation to understand the
concept of work queues, which is discussed in the next section. Assume that your kernel driver needs to perform
a heavy-duty task from an entry point. An example is a task that forces the calling thread to sleep-wait.
Naturally, your driver doesn't like to block until the task finishes, because that slows down the responsiveness of
applications relying on it. So, whenever the driver needs to perform this expensive work, it defers execution by
adding the corresponding routine to a linked list of work functions. The actual work is performed by a kernel
thread, which traverses the list and executes the work functions in the background. The driver submits work
functions to the tail of the list, while the kernel thread ploughs its way from the head of the list, thus ensuring
that work queued first gets done first. Of course, the rest of the driver needs to be designed to suit this scheme
of deferred execution. Before understanding this example, however, be aware that we will use the work queue
interface in Listing 3.5 to implement the same task in a simpler manner.

Let's first introduce the key driver data structures used by our example:

static struct _mydrv_wg {
struct list_head nmydrv_worklist; /* Work List */
spi nl ock_t | ock; /* Protect the |ist */
wai t _queue_head_t todo; /* Synchroni ze submtter
and worker */

} nydrv_wo;

struct _mydrv_work {
struct list_head nydrv_workitem /* The work chain */

voi d (*worker_func)(void *); /* Wrk to perform */
voi d *wor ker _dat a; /* Argunment to worker_func */
[* ... 0% /* Other fields */

} nydrv_work;

nydrv_wyg is global to all work submissions. Its members include a pointer to the head of the work list, and a
wait queue to communicate between driver functions that submit work and the kernel thread that performs the
work. The list helper functions do not protect accesses to list members, so you need to use concurrency
mechanisms to serialize simultaneous pointer references. This is done using a spinlock that is also a part of
nmydr v_wg. The driver initialization routine nydrv_i ni t () in Listing 3.2 initializes the spinlock, the list head, and
the wait queue, and kick starts the worker thread.

Listing 3.2. Initialize Data Structures



static int __init
nmydrv_init(void)
{
/* Initialize the lock to protect agai nst
concurrent |ist access */
spin_l ock_init(&ydrv_wg. | ock);

/* Initialize the wait queue for communication
bet ween the subnmitter and the worker */
i nit_waitqueue_head(&mydrv_wg.todo);

/* Initialize the list head */
I NI T_LI ST_HEAD( &rydr v_wg. nydrv_wor kl i st);

/* Start the worker thread. See Listing 3.4 */
kernel _t hread(mydrv_wor ker, NULL,

CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SI GCHLD);
return O;

Before examining the worker thread that executes submitted work, let's look at work submission itself. Listing
3.3 implements a function that other parts of the kernel can use to submit work. It uses | i st_add_tail () to
add a work function to the tail of the list. Look at Figure 3.1 to see the physical structure of the work list.

Figure 3.1. Linked list of work functions.
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Listing 3.3. Submitting Work to Be Executed Later



int
submi t _work(void (*func)(void *data), void *data)
{
struct _nydrv_work *nydrv_work;
/* Allocate the work structure */
mydrv_work = kmal | oc(si zeof (struct _mydrv_work), GFP_ATOM C);
if (!nydrv_work) return -1;
/* Popul ate the work structure */
nydr v_wor k- >wor ker _func = func; /* Work function */
nydrv_wor k- >wor ker _data = data; /* Argunment to pass */
spi n_I ock( &rydrv_wg. | ock); /* Protect the list */
/* Add your work to the tail of the list */
list_add_tail (&rydrv_work->nydrv_workitem
&mydrv_wg. mydrv_worklist);
/* Wake up the worker thread */
wake_up( &ydrv_wg. t 0odo) ;
spi n_unl ock( &rydrv_wg. | ock);
return O;
}

To submit a work function voi d j ob(voi d *) from a driver entry point, do this:

submit_work(j ob, NULL);

After submitting the work function, Listing 3.3 wakes up the worker thread. The general structure of the worker
thread shown in Listing 3.4 is similar to standard kernel threads discussed in the previous section. The thread
useslist_entry() to work its way through all nodes in the list. | i st _entry() returns the container data
structure inside which the list node is embedded. Take a closer look at the relevant line in Listing 3.4:

nmydrv_work = list_entry(nydrv_wg. mydrv_workl i st. next,
struct _nydrv_work, nydrv_workiten);

nmydr v_wor ki t emis embedded inside nydrv_work, solist_entry() returns a pointer to the corresponding
nmydr v_wor k structure. The parameters passed to |l i st _entry() are the address of the embedded list node, the
type of the container structure, and the field name of the embedded list node.

After executing a submitted work function, the worker thread removes the corresponding node from the list
using | i st _del (). Note that nydrv_wqg. | ock is released and reacquired in the time window when the submitted
work function is executed. This is because work functions can go to sleep resulting in potential deadlocks if
newly scheduled code tries to acquire the same spinlock.

Listing 3.4. The Worker Thread



Code View:

static int
mydr v_wor ker (voi d *unused)
{

DECLARE_WAI TQUEUE(wai t, current);
voi d (*worker_func)(void *);

voi d *wor ker _dat a;

struct _nydrv_work *nydrv_work;

set _current_stat e( TASK | NTERRUPTI BLE) ;

/* Spin until asked to die */

while (!'asked to_die()) {
add_wait_queue( &ydrv_wg.todo, &wait);

if (list_enpty(&rmydrv_wg. mydrv_worklist)) {

schedul e();

/* Woken up by the submitter */
} else {

set _current _stat e( TASK_RUNNI NG ;

}

renmove_wait _queue( &rydrv_wg.todo, &wait);

/* Protect concurrent access to the list */
spi n_| ock( &rydrv_wg. | ock);

/* Traverse the list and pl ough through the work functions
present in each node */
while (!list_enmpty(&ydrv_wg. nydrv_worklist)) {

/* Get the first entry in the list */
nydrv_work = list_entry(nmydrv_wg. mydrv_worKklist.next,
struct _nydrv_work, mydrv_workiten);
wor ker _func mydr v_wor k- >wor ker _f unc;
wor ker _data = mydrv_wor k- >wor ker _dat a;

/* This node has been processed. Throw it
out of the list */

I'ist_del (nydrv_wg. nydrv_worklist.next);

kfree(mdrv_work); /* Free the node */

/* Execute the work function in this node */
spi n_unl ock( &rydrv_wg.l ock); /* Release |ock */
wor ker _func(worker_data);
spi n_| ock( &ydrv_wg. | ock); /* Re-acquire lock */
}
spi n_unl ock( &ydrv_wg. | ock);
set _current_st at e( TASK_| NTERRUPTI BLE) ;
}

set _current_state( TASK_RUNNI NG ;
return O;

}




For simplicity, the example code does not perform error handling. For example, if the call to ker nel _t hread()
in Listing 3.2 fails, you need to free memory allocated for the corresponding work structure. Also,

asked_t o_di e() in Listing 3.4 is left unwritten. It essentially breaks out of the loop if it either detects a
delivered signal or receives a communication from the r el ease() entry point that the module is about to be
unloaded from the kernel.

Before ending this section, let's take a look at another useful list library routine, I i st _for_each_entry() . With
this macro, iteration becomes simpler and more readable because you don't have to use | i st _entry() inside
the loop. Use the | i st _for_each_entry_saf e() variant if you will delete list elements inside the loop. You can
replace the following snippet in Listing 3.4:

while (!list_enmpty(&rydrv_wg. mydrv_worklist)) {
mydrv_work = list_entry(nydrv_wg. nydrv_worKklist. next,
struct _nydrv_work, nydrv_workiten;
[* o0 %

with:

struct _nydrv_work *tenp;
list _for_each_entry_safe(nydrv_work, tenp,
&nydrv_wg. nydrv_wor kl i st
nmydrv_wor ki ten) {
[* .00

You can'tuse | i st_for_each_entry() in this case because you are removing the entry pointed to by
nmydr v_wor k inside the loop in Listing 3.4.1i st _for_each_entry_safe() solves this problem using the
temporary variable passed as the second argument (t enp) to save the address of the next entry in the list.

Hash Lists

The doubly linked list implementation discussed previously is not optimal for cases where you want to
implement linked data structures such as hash tables. This is because hash tables need only a list head
containing a single pointer. To reduce memory overhead for such applications, the kernel provides hash lists (or
hlists), a variation of lists. Unlike lists, which use the same structure for the list head and list nodes, hlists have
separate definitions:

struct hlist_head {
struct hlist_node *first;

}s

struct hlist_node {
struct hlist_node *next, **pprev;

}s

To suit the scheme of a single-pointer hlist head, the nodes maintain the address of the pointer to the previous
node, rather than the pointer itself.

Hash tables are implemented using an array of hl i st _heads. Each hl i st _head sources a doubly linked list of
hl i st _nodes. A hash function is used to locate the index (or bucket) in the hl i st _head array. When that is
done, you may use hlist helper routines (also defined in include/linux/list.h) to operate on the list of

hl i st _nodes linked to the chosen bucket. Look at the implementation of the directory cache (dcache) in



fs/dcache.c for an example.

Work Queues

Work queues are a way to defer work inside the kernel.[2] Deferring work is useful in innumerable situations.
Examples include the following:

[2] Softirgs and tasklets are two other mechanisms available for deferring work inside the kernel. Table 4.1 of Chapter 4 compares softirgs,
tasklets, and work queues.

Triggering restart of a network adapter in response to an error interrupt

Filesystem tasks such as syncing disk buffers

Sending a command to a disk and following through with the storage protocol state machine

The functionality of work queues is similar to the example described in Listings 3.2 to 3.4. However, work
queues can help you accomplish the same task in a simpler manner.

The work queue helper library exposes two interface structures to users: a wor kqueue_struct and a
wor k_struct . Follow these steps to use work queues:

1.

Create a work queue (or a wor kqueue_struct ) with one or more associated kernel threads. To create a
kernel thread to service a wor kqueue_st ruct, use creat e_si ngl et hread_wor kqueue() . To create one
worker thread per CPU in the system, use the cr eat e_wor kqueue() variant. The kernel also has default
per-CPU worker threads (events/n, where n is the CPU number) that you can timeshare instead of
requesting a separate worker thread. Depending on your application, you might incur a performance hit if
you don't have a dedicated worker thread.

Create a work element (or awor k_struct). Awork_struct is initialized using | NIl T_WORK() , which
populates it with the address and argument of your work function.

Submit the work element to the work queue. A wor k_struct can be submitted to a dedicated queue using
gueue_wor k() , or to the default kernel worker thread using schedul e_wor k() .

Let's rewrite Listings 3.2 to 3.4 to take advantage of the work queue interface. This is done in Listing 3.5. The
entire kernel thread, as well as the spinlock and the wait queue, vanish inside the work queue interface. Even
the call to cr eat e_si ngl et hr ead_wor kqueue() goes away if you are using the default kernel worker thread.

Listing 3.5. Using Work Queues to Defer Work



Code View:
#i ncl ude <l i nux/wor kqueue. h>

struct workqueue_struct *wg;

/* Driver Initialization */

static int __init
nmydrv_init(void)
{

[* o000
wg = create_singlethread_workqueue("nmydrv");
return O;

/* Work Subm ssion. The first argunent is the work function, and
the second argunent is the argunent to the work function */

int

submt _work(void (*func)(void *data), void *data)

{

struct work_struct *hardwork;
hardwor k = kmal | oc(si zeof (struct work_struct), GFP_KERNEL);

/* Init the work structure */
I NI T_WORK( har dwor k, func, data);

/* Enqueue Work */
queue_wor k(wg, hardwork);
return O;

If you are using work queues, you will get linker errors unless you declare your module as licensed under
GPL. This is because the kernel exports these functions only to GPLed code. If you look at the kernel
work queue implementation, you will see this restriction expressed in statements such as this:

EXPORT_SYMBOL_GPL( queue_wor k) ;

To announce that your module is copyleft-ed under GPL, declare the following:

MODULE_LI CENSE(" GPL") ;

Notifier Chains

Notifier chains are used to send status change messages to code regions that request them. Unlike hard-coded
mechanisms, notifiers offer a versatile technique for getting alerted when events of interest are generated.
Notifiers were originally added for passing network events to concerned sections of the kernel but are now used
for many other purposes. The kernel implements predefined notifiers for significant events. Examples of such
notifications include the following:



¢ Die notification, which is sent when a kernel function triggers a trap or a fault, caused by an "oops,"
page fault, or a breakpoint hit. If you are, for example, writing a device driver for a medical grade card,
you might want to register yourself with the die notifier so that you can attempt to turn off the medical

electronics if a kernel panic occurs.

¢ Net device notification, which is generated when a network interface goes up or down.

e CPU frequency notification, which is dispatched when there is a transition in the processor frequency.

¢ Internet address notification, which is sent when a change is detected in the IP address of a network

interface.

An example user of notifiers is the High-level Data Link Control (HDLC) protocol driver drivers/net/wan/hdlc.c,
which registers itself with the net device notifier chain to sense carrier changes.

To attach your code to a notifier chain, you have to register an event handler with the associated chain. An
event identifier and a notifier-specific argument are passed as arguments to the handler routine when the
concerned event is generated. To define a custom notifier chain, you have to additionally implement the
infrastructure to ignite the chain when the event is detected.

Listing 3.6 contains examples of using predefined and user-defined notifiers. Table 3.2 contains a brief
description of the notifier chains used by Listing 3.6 and the events they propagate, so look at the listing and

the table in tandem.

Table 3.2. Notifier Chains and the Events They Propagate

Notifier Chain

Description

Die Notifier Chain (di e_chai n)

Netdevice Notifier
Chain(net dev_chai n)

ny_di e_event _handl er () attaches to the die notifier chain,

di e_chai n, using regi ster_die_notifier(). To trigger invocation
of ny_di e_event _handl er (), introduce an invalid dereference
somewhere in your code, such as the following:

int *q = 0;

*q = 1,

When this code snippet is executed, nmy_di e_event _handl er () gets
called, and you will see a message like this:

ny_di e_event _handl er: OOPs! at El P=f00350e7

The die event notifier passes the di e_ar gs structure to the
registered event handler. This argument contains a pointer to the
regs structure, which carries a snapshot of processor register
contents when the fault occurred. ny_di e_event _handl er () prints
the contents of the instruction pointer register.

nmy_dev_event _handl er () attaches to the net device notifier chain,
net dev_chai n, using r egi st er _netdevi ce_notifier(). You can
generate this event by changing the state of a network interface
such as Ethernet (et hX) or loopback (I 0):

bash> ifconfig ethO up



Notifier Chain Description

This results in the execution of my_dev_event _handl er (). The
handler is passed a pointer to struct net_devi ce as argument,
which contains the name of the network interface.
nmy_dev_event _handl er () uses this information to produce the
following message:

ny_dev_event _handl er: Val =1, Interface=eth0

Val =1 corresponds to the NETDEV_UP event as defined in
include/linux/notifier.h.

User-Defined Notifier Chain Listing 3.6 also implements a user-defined notifier chain,
ny_noti _chai n. Assume that you want an event to be generated
whenever a user reads from a particular file in the process
filesystem. Add the following in the associated procfs r ead routine:
bl ocki ng_notifier_call _chain(&ry_noti_chain, 100, NULL);

This results in the invocation of ny_event _handl er () whenever
you read from the corresponding /proc file and results in the
following message:

nmy_event _handl er: Val =100

Val contains the identity of the generated event, which is 100 for
this example. The function argument is left unused.

You have to unregister event handlers from notifier chains when your module is released from the kernel. For
example, if you up or down a network interface after unloading the code in Listing 3.6, you will be rankled by an
"oops," unless you perform an unr egi ster_netdevi ce_notifier(&ry_dev_notifier) from the module's

rel ease() method. This is because the notifier chain continues to think that the handler code is valid, even
though it has been pulled out of the kernel.

Listing 3.6. Notifier Event Handlers

Code View:

#i nclude <linux/notifier.h>
#i ncl ude <asni kdebug. h>

#i ncl ude <l i nux/ net devi ce. h>
#i ncl ude <l i nux/inetdevice. h>

/* Die Notifier Definition */
static struct notifier_block my_die_notifier = {
.notifier_call = ny_die_event_handl er,
I
/* Die notification event handler */
int
nmy_di e_event _handl er (struct notifier_block *self,
unsi gned | ong val, void *data)

{

struct die_args *args = (struct die_args *)data;

if (val ==1) { /* '1" corresponds to an "oops" */
printk("ny_die_event: OOPs! at ElIP=% x\n", args->regs->eip);




} /* else ignore */
return O;

}

/* Net Device notifier definition */
static struct notifier_block my_dev_notifier = {
.notifier_call = ny_dev_event _handl er,

b

/* Net Device notification event handler */
int my_dev_event _handl er(struct notifier_block *self,
unsi gned long val, void *data)
{
printk("ny_dev_event: Val=%d, Interface=%\n", val,
((struct net_device *) data)->nane);
return 0;

}

/* User-defined notifier chain inplenentation */
stati c BLOCKI NG _NOTI FI ER_HEAD( ny_noti _chain);

static struct notifier_block ny _notifier = {
.notifier_call = ny_event_handl er,

b

/* User-defined notification event handler */
int my_event _handl er(struct notifier_block *self,
unsi gned | ong val, void *data)

{
printk("my_event: Val =%d\n", val);
return O;
}
/[* Driver Initialization */
static int __init
nmy_init(void)
{
[* o000
/* Register Die Notifier */
register_die_notifier(&y_die_notifier);
/* Register Net Device Notifier */
regi ster_netdevice_notifier(&ry_dev_notifier);
/* Register a user-defined Notifier */
bl ocki ng_notifier_chain_register(&rmy_noti_chain, &y _notifier);
[* o000
}

nmy_noti _chai n in Listing 3.6 is declared as a blocking notifier using BLOCKI NG_NOTI FI ER_HEAD() and is
registered via bl ocki ng_noti fi er_chai n_regi ster (). This means that the notifier handler is always invoked
from process context. So, the handler function, ny_event _handl er (), is allowed to go to sleep. If your notifier



handler can be called from interrupt context, declare the notifier chain using ATOM C_NOTI FI ER_HEAD() , and
register it via atomi c_notifier_chain_register().

The Old Notifier Interface

Kernel releases earlier than 2.6.17 supported only a general-purpose notifier chain. The notifier
registration function noti fi er _chai n_regi ster () was internally protected using a spinlock, but
the routine that walked the notifier chain dispatching events to notifier handlers

(notifier_call _chain()) was lockless. The lack of locking was because of the possibility that the
handler functions may go to sleep, unregister themselves while running, or get called from
interrupt context. The lockless implementation introduced race conditions, however. The new
notifier API is built over the original interface and is intended to overcome its limitations.

Completion Interface

Many parts of the kernel initiate certain activities as separate execution threads and then wait for them to
complete. The completion interface is an efficient and easy way to implement such code patterns.

Some example usage scenarios include the following:

e Your driver module is assisted by a kernel thread. If you rmmod the module, the r el ease() method is
invoked before removing the module code from kernel space. The release routine asks the thread to kill
itself and blocks until the thread completes its exit. Listing 3.7 implements this case.

e You are writing a portion of a block device driver (discussed in Chapter 14, "Block Drivers") that queues a
read request to a device. This triggers a state machine change implemented as a separate thread or work
queue. The driver wants to wait until the operation completes before proceeding with another activity.
Look at drivers/block/floppy.c for an example.

¢ An application requests an Analog-to-Digital Converter (ADC) driver for a data sample. The driver initiates
a conversion request waits, until an interrupt signals completion of conversion, and returns the data.

Listing 3.7. Synchronizing Using Completion Functions

Code View:

static DECLARE_COVPLETI ON(ny_t hread_exit); /* Conpl etion */
static DECLARE_WAI T_QUEUE_HEAD(ny_thread_wait); /* Wait Queue */
int pink_slip = 0; /* Exit Flag */

/* Hel per thread */

static int
nmy_t hread(voi d *unused)
{

DECLARE_WAI TQUEUE(wai t, current);

daenoni ze("ny_t hread");
add_wait_queue(&nny_thread_wait, &wait);

while (1) {
/* Rel inqui sh processor until event occurs */




set _current_stat e( TASK_| NTERRUPTI BLE) ;

schedul e();

/* Control gets here when the thread i s woken
up fromthe nmy_thread_wait wait queue */

/* Qit if et go */
if (pink_slip) {

br eak;
}

/* Do the real work */
[* ... %

}

/* Bail out of the wait queue */
__set_current _state( TASK_RUNNI NG) ;
renove_wait _queue(&ry_thread wait, &wait);

/* Atomically signal conpletion and exit */
conpl ete_and_exit(&my_thread_exit, 0);
}

/* Module Initialization */

static int __init
ny_init(void)

{
1* .0

/* Kick start the thread */
kernel _thread(my_t hread, NULL,
CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SI GCHLD);

[* ... %
}
/* NModul e Rel ease */

static void __exit
nmy_rel ease(voi d)

{
[* .0
pink_slip = 1; /* my_thread nmust go */
wake_up(&ny_thread_wait); /* Activate ny_thread */
wai t_for_conpletion(&ry_thread_exit); /* Wait until ny_thread

quits */

[* .00

}

A completion object can be declared statically using DECLARE_COVPLETI ON() or created dynamically with
init_conpletion(). A thread can signal completion with the help of conpl et e() or conpl ete_all (). A caller
can wait for completion viawai t _f or_conpl etion().

In Listing 3.7, ny_r el ease() raises an exit request flag by setting pi nk_sl i p before waking up ny_t hread() . It
then calls wai t _for_conpl etion() to wait until ny_t hr ead() completes its exit. my_t hread(), on its part,
wakes up to find pi nk_sl i p set, and does the following:



1. Signals completion to ny_rel ease()

2. Kills itself

ny_t hread() accomplishes these two steps atomically using conpl et e_and_exi t () . Using
conpl et e_and_exi t () shuts the window between module exit and thread exit that opens if you separately
invoke conpl ete() and exi t ().

We will use the completion APl when we develop an example telemetry driver in Chapter 11.

Kthread Helpers

Kthread helpers add a coating over the raw thread creation routines and simplify the task of thread
management.

Listing 3.8 rewrites Listing 3.7 using the kthread helper interface. ny_i ni t () now uses kt hread_creat e()
rather than kernel _t hread() . You can pass the thread's name to kt hread_cr eat e() rather than explicitly call
daenoni ze() within the thread.

The kthread interface provides you free access to a built-in exit synchronization mechanism implemented using
the completion interface. So, as ny_r el ease() does in Listing 3.8, you may directly call kt hr ead_st op()
instead of laboriously setting pi nk_sl i p, waking up ny_t hread() , and waiting for it to complete using

wai t _for_conpl etion(). Similarly, ny_t hread() can make a neat call to kt hr ead_shoul d_st op() to check
whether it ought to call it a day.

Listing 3.8. Synchronizing Using Kthread Helpers

Code View:
/* '+ and '-' show the differences fromListing 3.7 */

#i ncl ude <l i nux/kt hread. h>

/* Assistant Thread */

static int
my_t hread(voi d *unused)
{

DECLARE_WAI TQUEUE(wai t, current);
- daenoni ze("nmy_t hread") ;

while (1) {
/* Continue work if no other thread has
* invoked kthread_stop() */
while (!kthread_shoul d_stop()) {
[* ... %]
[* Quit if let go */
- if (pink_slip) {
- br eak;
- }
[* ... %]
}
__set_current_stat e( TASK_RUNNI NG ;
renmove_wait_queue(&ry_thread wait, &wait);

+ o+ o+




- conpl ete_and_exit(&my_thread_exit, 0);
+ return O,

}

+ struct task_struct *ny_task;

/* Module Initialization */

static int __init
ny_init(void)
{

I* ..

- kernel _thread(my_thread, NULL,
- CLONE_FS | CLONE_FILES | CLONE_SI GHAND |
S| GCHLD) ;
+ nmy_task = kthread_create(ny_thread, NULL, "%", "ny_thread");
+ if (my_task) wake_up_process(ny_task);

I* o
}

/* Modul e Rel ease */

static void __exit

ny_rel ease(voi d)

{

[* ...0=

- pink _slip = 1;
- wake_up(&ry_thread_wait);
- wait_for_conpletion(&ry_thread_exit);
+ kthread_stop(ny_task);

I* .0 %

Instead of creating the thread using kt hr ead_cr eat e() and activating it via wake_up_process() as done in
Listing 3.8, you may use the following single call:

kt hread_run(ny_thread, NULL, "%", "nmy_thread");

Error-Handling Aids

Several kernel functions return pointer values. Whereas callers usually check for failure by comparing the return
value with NULL, they typically need more information to decipher the exact nature of the error that has
occurred. Because kernel addresses have redundant bits, they can be overloaded to encode error semantics.
This is done with the help of a set of helper routines. Listing 3.9 implements a simple usage example.

Listing 3.9. Using Error-Handling Aids



Code View:
#i ncl ude <linux/err.h>

char *
col | ect _data(char *userbuffer)
{

char *buffer;

[* ...

buffer = kmal | oc(100, GFP_KERNEL);

if (!buffer) { /* Qut of menmory */
return ERR _PTR(- ENOVEM ;

}

[* ...
if (copy_fromuser(buffer, userbuffer, 100)) {
return ERR_PTR(- EFAULT);

}
1% .. %

return(buffer);

}

int

ny_function(char *userbuffer)

{
char *buf;
[* o000
buf = coll ect_data(userbuffer);
if (I1S_ERR(buf)) {

printk("Error returned is %d!'\n", PTR_ERR(buf));

}
[* o000

}

If kmal | oc() fails inside col | ect _dat a() in Listing 3.9, you will get the following message:

Error returned is -12!

However, if col | ect _dat a() is successful, it returns a valid pointer to a data buffer. As another example, let's
add error handling using I S_ ERR() and PTR_ERR() to the thread creation code in Listing 3.8:

my_task = kthread_create(ny_thread, NULL, "9%", "nydrv");

+ if (IS ERR(ny_task)) {

+ /* Success */
wake_up_process(ny_task);

+ } else {

+ /* Failure */



printk("Error value returned=%l\n", PTR ERR(ny_task));



Looking at the Sources

The ksoftirgd, pdflush, and khubd kernel threads live in kernel/softirq.c, mm/pdflush.c, and
drivers/usb/core/hub.c, respectively.

The daenoni ze() function can be found in kernel/exit.c. For the implementation of user mode helpers, look at
kernel/kmod.c.

The list and hlist library routines reside in include/linux/list.h. They are used all over the kernel, so you will find
usage examples in most subdirectories. An example is the r equest _queue structure defined in
include/linux/blkdev.h, which holds a linked list of disk 1/0 requests. We look at this data structure in Chapter
14.

Go to www.ussg.iu.edu/hypermail/linux/kernel/0007.3/0805.html and follow the discussion thread in the
mailing list for an interesting debate between Linus Torvalds and Andi Kleen about the pros and cons of
complementing the list library with hlist helper routines.

The kernel work queue implementation lives in kernel/workqueue.c. To understand the real-world use of work
queues, look at the PRO/Wireless 2200 network driver, drivers/net/wireless/ipw2200.c.

The kernel notifier chain implementation lives in kernel/sys.c and include/linux/notifier.h. Look at kernel/sched.c
and include/linux/completion.h for the guts of the completion interface. kernel/kthread.c contains the source
code for kthread helpers, and include/linux/err.h includes definitions of error handling aids.

Table 3.3 contains a summary of the main data structures used in this chapter and the location of their

definitions in the source tree. Table 3.4 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 3.3. Summary of Data Structures

Data Structure Location Description

wai t _queue_t include/linux/wait.h Used by threads that desire to wait for
an event or a system resource

list_head include/linux/list.h Kernel structure to weave a doubly
linked list of data structures

hli st _head include/linux/list.h Kernel structure to implement hash
tables

wor k_struct include/linux/workqueue.h Implements work queues, which are a

way to defer work inside the kernel

noti fier_bl ock include/linux/notifier.h Implements notifier chains, which are
used to send status changes to code
regions that request them

conpl etion include/linux/completion.h Used to initiate activities as separate
threads and then wait for them to
complete

Table 3.4. Summary of Kernel Programming Interfaces



Kernel Interface

Location

Description

DECLARE_ WAl TQUEUE( )

add_wai t _queue()

renove_wait _queue()

wake_up_interruptible()

schedul e()

set _current_state()

kernel _thread()

daenoni ze()

al | ow_si gnal ()

si gnal _pendi ng()

cal | _user nodehel per ()

Linked list library functions

regi ster_die_notifier()

regi ster_netdevice_notifier()
regi ster_inetaddr_notifier()

BLOCKI NG_NOTI FI ER_HEADY )

include/linux/wait.h

kernel/wait.c

kernel/wait.c

include/linux/wait.h
kernel/sched.c

kernel/sched.c

include/linux/sched.h

arch/your-
arch/kernel/process.c

kernel/exit.c

kernel/exit.c

include/linux/sched.h

include/linux/kmod.h
kernel/kmod.c

include/linux/list.h

arch/your-
arch/kernel/traps.c

net/core/dev.c
net/ipv4/devinet.c

include/linux/notifier.h

bl ocki ng_noti fier_chain_register() kernel/sys.c

Declares a wait queue.

Queues a task to a wait queue.
The task goes to sleep until it's
woken up by another thread or
interrupt handler.

Dequeues a task from a wait
queue.

Wakes up a task sleeping inside
a wait queue and puts it back
into the scheduler run queue.

Relinquishes the processor and
allows other parts of the kernel
to run.

Sets the run state of a process.
The state can be one of
TASK_RUNNI NG,

TASK_| NTERRUPTI BLE,
TASK_UNI NTERRUPTI BLE,
TASK_STOPPED, TASK_TRACED,
EXI T_ZOMBI E, or EXI T_DEAD.

Creates a kernel thread.

Activates a kernel thread
without attaching user resources
and changes the parent of the
calling thread to kthreadd.

Enables delivery of a specified
signal.

Checks whether a signal has
been delivered. There are no
signal handlers inside the kernel,
so you have to explicitly check
whether a signal has been
delivered.

Executes a user mode program.

See Table 3.1.

Registers a die notifier.

Registers a netdevice notifier.
Registers an inetaddr notifier.

Creates a user-defined blocking
notifier.

Registers a blocking notifier.



Kernel Interface

Location

Description

bl ocki ng_notifier_call _chain()

ATOM C_NOTI FI ER_HEAIX)
atom c_notifier_chain_register()

DECLARE_COVPLETI ON( )

init_conpletion()

conpl et e()

wai t _for_conpl etion()

conpl ete_and_exi t ()

kt hread_create()
kt hread_st op()
kt hread_shoul d_st op()

'S ERR()

kernel/sys.c

include/linux/notifier.h
kernel/sys.c

include/linux/completion.h

include/linux/completion.h

kernel/sched.c

kernel/sched.c

kernel/exit.c

kernel/kthread.c
kernel/kthread.c

kernel/kthread.c

include/linux/err.h

Dispatches an event to a
blocking notifier chain.

Creates an atomic notifier.
Registers an atomic notifier.

Statically declares a completion
object.

Dynamically declares a
completion object.

Announces completion.

Waits until the completion object
completes.

Atomically signals completion
and exit.

Creates a kernel thread.
Asks a kernel thread to stop.

A kernel thread can poll on this
function to detect whether
another thread has asked it to
stop via kt hread_st op() .

Finds out whether the return
value is an error code.
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We are now within whispering distance of writing a device driver. Before doing that, however, let's
equip ourselves with some driver concepts. We start the chapter by getting an idea of the book's
problem statement; we will look at the typical devices and 1/0 interfaces present on PC-compatible
systems and embedded computers. Interrupt handling is an integral part of most drivers, so we
next cover the art of writing interrupt handlers. We then turn our attention to the new device
model introduced in the 2.6 kernel. The new model is built around abstractions such as sysfs,
kobjects, device classes, and udev, which distill commonalities from device drivers. The new device
model also weeds policies out of kernel space and pushes them to user space, resulting in a total
revamp of features such as /dev node management, hotplug, coldplug, module autoload, and
firmware download.

Introducing Devices and Drivers

User applications cannot directly communicate with hardware because that entails possessing privileges such as
executing special instructions and handling interrupts. Device drivers assume the burden of interacting with
hardware and export interfaces that applications and the rest of the kernel can use to access devices.
Applications operate on devices via nodes in the /dev directory and glean device information using nodes in the
/sys directory.[1]



[1] As you'll learn later, networking applications route their requests to the underlying driver using a different mechanism.

Figure 4.1 shows the hardware block diagram of a typical PC-compatible system. As you can see, the system
supports diverse devices and interface technologies such as memory, video, audio, USB, PCI, WiFi, PCMCIA, 12C,
IDE, Ethernet, serial port, keyboard, mouse, floppy drive, parallel port, and Infrared. The memory controller and
the graphics controller are part of a North Bridge chipset in the PC architecture, whereas peripheral buses are

sourced out of a South Bridge.

Figure 4.1. Hardware block diagram of a PC-compatible system.
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Figure 4.2 illustrates a similar block diagram for a hypothetical embedded device. This diagram contains several
interfaces not typical in the PC world such as flash memory, LCD, touch screen, and cellular modem.



Figure 4.2. Hardware block diagram of an embedded system.
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Naturally, the capability to access peripheral devices is a crucial part of a system's functioning. Device drivers
provide the engine to achieve this. The rest of the chapters in this book will zoom in on a device interface and
teach you how to implement the corresponding device driver.
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Naturally, the capability to access peripheral devices is a crucial part of a system's functioning. Device drivers
provide the engine to achieve this. The rest of the chapters in this book will zoom in on a device interface and
teach you how to implement the corresponding device driver.



Interrupt Handling

Because of the indeterminate nature of 1/0, and speed mismatches between 1/0 devices and the processor,
devices request the processor's attention by asserting certain hardware signals asynchronously. These hardware
signals are called interrupts. Each interrupting device is assigned an associated identifier called an interrupt
request (IRQ) number. When the processor detects that an interrupt has been generated on an IRQ, it abruptly
stops what it's doing and invokes an interrupt service routine (ISR) registered for the corresponding IRQ.
Interrupt handlers (ISRs) execute in interrupt context.

Interrupt Context

ISRs are critical pieces of code that directly converse with the hardware. They are given the privilege of instant
execution in the larger interest of system performance. However, if ISRs are not quick and lightweight, they
contradict their own philosophy. VIPs are given preferential treatment, but it's incumbent on them to minimize
the resulting inconvenience to the public. To compensate for rudely interrupting the current thread of execution,
ISRs have to politely execute in a restricted environment called interrupt context (or atomic context).

Here is a list of do's and don'ts for code executing in interrupt context:

1. It's a jailable offense if your interrupt context code goes to sleep. Interrupt handlers cannot relinquish the
processor by calling sleepy functions such as schedul e_t i neout () . Before invoking a kernel API from
your interrupt handler, penetrate the nested invocation train and ensure that it does not internally trigger
a blocking wait. For example, i nput _r egi st er _devi ce() looks harmless from the surface, but tosses a
call to kmal | oc() under the hood specifying GFP_KERNEL as an argument. As you saw in Chapter 2, "A
Peek Inside the Kernel," if your system's free memory dips below a watermark, knmal | oc() sleep-waits for
memory to get freed up by the swapper, if you invoke it in this manner.

2. For protecting critical sections inside interrupt handlers, you can't use mutexes because they may go to
sleep. Use spinlocks instead, and use them only if you must.

3. Interrupt handlers cannot directly exchange data with user space because they are not connected to user
land via process contexts. This brings us to another reason why interrupt handlers cannot sleep: The
scheduler works at the granularity of processes, so if interrupt handlers sleep and are scheduled out, how
can they be put back into the run queue?

4. Interrupt handlers are supposed to get out of the way quickly but are expected to get the job done. To
circumvent this Catch-22, interrupt handlers usually split their work into two. The slim top half of the
handler flags an acknowledgment claiming that it has serviced the interrupt but, in reality, offloads all the
hard work to a fat bottom half. Execution of the bottom half is deferred to a later point in time when all
interrupts are enabled. You will learn to develop bottom halves while discussing softirgqs and tasklets later.

5. You need not design interrupt handlers to be reentrant. When an interrupt handler is running, the
corresponding IRQ is disabled until the handler returns. So, unlike process context code, different
instances of the same handler will not run simultaneously on multiple processors.

6. Interrupt handlers can be interrupted by handlers associated with IRQs that have higher priority. You can
prevent this nested interruption by specifically requesting the kernel to treat your interrupt handler as a



fast handler. Fast handlers run with all interrupts disabled on the local processor. Before disabling
interrupts or labeling your interrupt handler as fast, be aware that interrupt-off times are bad for system
performance. More the interrupt-off times, more is the interrupt latency, or the delay before a generated
interrupt is serviced. Interrupt latency is inversely proportional to the real time responsiveness of the
system.

A function can check the value returned by i n_i nterrupt () to find out whether it's executing in interrupt
context.

Unlike asynchronous interrupts generated by external hardware, there are classes of interrupts that arrive
synchronously. Synchronous interrupts are so called because they don't occur unexpectedly—the processor itself
generates them by executing an instruction. Both external and synchronous interrupts are handled by the kernel
using identical mechanisms.

Examples of synchronous interrupts include the following:

e Exceptions, which are used to report grave runtime errors

e Software interrupts such as the i nt 0x80 instruction used to implement system calls on the x86
architecture

Assigning IRQs

Device drivers have to connect their IRQ number to an interrupt handler. For this, they need to know the IRQ
assigned to the device they're driving. IRQ assignments can be straightforward or may require complex probing.
In the PC architecture, for example, timer interrupts are assigned IRQ 0, and RTC interrupts answer to IRQ 8.
Modern bus technologies such as PCI are sophisticated enough to respond to queries regarding their IRQs
(assigned by the BIOS when it walks the bus during boot). PCI drivers can poke into earmarked regions in the
device's configuration space and figure out the IRQ. For older devices such as Industries Standard Architecture
(ISA)-based cards, the driver might have to leverage hardware-specific knowledge to probe and decipher the
IRQ.

Take a look at /proc/interrupts for a list of active IRQs on your system.

Device Example: Roller Wheel

Now that you have learned the basics of interrupt handling, let's implement an interrupt handler for an example
roller wheel device. Roller wheels can be found on some phones and PDAs for easy menu navigation and are
capable of three movements: clockwise rotation, anticlockwise rotation, and key-press. Our imaginary roller
wheel is wired such that any of these movements interrupt the processor on IRQ 7. Three low order bits of
General Purpose 1/0 (GPIO) Port D of the processor are connected to the roller device. The waveforms
generated on these pins corresponding to different wheel movements are shown in Figure 4.3. The job of the
interrupt handler is to decipher the wheel movements by looking at the Port D GPIO data register.

Figure 4.3. Sample wave forms generated by the roller wheel.
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The driver has to first request the IRQ and associate an interrupt handler with it:

#define ROLLER IRQ 7
static irqgreturn_t roller_interrupt(int irq, void *dev_id);

if (request_irq(ROLLER_IRQ roller_interrupt, |RQF_D SABLED |
IRQF_TRIGGER RISING, "roll", NULL)) {
printk(KERN_ERR "Roll: Can't register 1RQ %d\n", ROLLER IRQ;
return -EI O
}

Let's look at the arguments passed to request _i rq() . The IRQ number is not queried or probed but hard-coded
to ROLLER I RQin this simple case as per the hardware connection. The second argument, rol l er _interrupt(),
is the interrupt handler routine. Its prototype specifies a return type of i rqret urn_t , which can be | RQ_ HANDLED
if the interrupt is handled successfully or | RQ_NONE if it isn't. The return value assumes more significance for 1/0
technologies such as PCI, where multiple devices can share the same IRQ.

The | RQ-_DI SABLED flag specifies that this interrupt handler has to be treated as a fast handler, so the kernel



has to disable interrupts while invoking the handler. | RQF_TRI GGER_RI SI NG announces that the roller wheel
generates a rising edge on the interrupt line when it wants to signal an interrupt. In other words, the roller
wheel is an edge-sensitive device. Some devices are instead level-sensitive and keep the interrupt line asserted
until the CPU services it. To flag an interrupt as level-sensitive, use the | RQF_TRI GGER_HI GH flag. Other possible
values for this argument include | RQF_SAMPLE_RANDOM (used in the section, "Pseudo Char Drivers" in Chapter 5,
"Character Drivers") and | RQF_SHARED (used to specify that this IRQ is shared among multiple devices).

The next argument, "rol | ", is used to identify this device in data generated by files such as /proc/interrupts.
The final parameter, set to NULL in this case, is relevant only for shared interrupt handlers and is used to
identify each device sharing the IRQ line.

Starting with the 2.6.19 kernel, there have been some changes to the interrupt handler interface.
Interrupt handlers used to take a third argument (struct pt_regs *) that contained a pointer to CPU
registers, but this has been removed starting with the 2.6.19 kernel. Also, the | RQF_xxx family of
interrupt flags replaced the SA xxx family. For example, with earlier kernels, you had to use

SA | NTERRUPT rather than | RQF_DI SABLED to mark an interrupt handler as fast.

Driver initialization is not a good place for requesting an IRQ because that can hog that valuable resource even
when the device is not in use. So, device drivers usually request the IRQ when the device is opened by an
application. Similarly, the IRQ is freed when the application closes the device and not while exiting the driver
module. Freeing an IRQ is done as follows:

free_irq(int irqg, void *dev_id);
Listing 4.1 shows the implementation of the roller interrupt handler. rol | er _i nterrupt () takes two
arguments: the IRQ and the device identifier passed as the final argument to the associated r equest _irq() .

Look at Figure 4.3 side by side with this listing.

Listing 4.1. The Roller Interrupt Handler

Code View:
spinlock_t roller_lock = SPI N_LOCK_UNLCCKED;

static DECLARE_WAI T_QUEUE_HEAD(rol | er _poll);

static irgreturn_t
roller_interrupt(int irq, void *dev_id)

{
int i, PAt, PAdelta_t, novenment = 0;

/* Get the waveforns frombits 0, 1 and 2
of Port D as shown in Figure 4.3 */
PAt = PORTD & 0x07;

/* Wait until the state of the pins change.
(Add sone tinmeout to the |oop) */

for (i=0; (PA t==PA delta_t); i++){
PA delta t = PORTD & 0x07;

}

novenent = determ ne_novenent (PA t, PA delta_t); /* See bel ow */




spi n_l ock( & oller_lock);

/* Store the wheel novenent in a buffer for

| ater access by the read()/poll() entry points */
st ore_novenent s( novenent) ;

spi n_unl ock( & ol ler_| ock);

/* Wake up the poll entry point that m ght have
gone to sleep, waiting for a wheel nmovenent */
wake_up_interruptible(&oller_poll);

return | RQ HANDLED;
}
int
determ ne_novenent (int PAt, int PA delta_t)
{
switch (PA_t){
case 0:
switch (PA_delta_t){
case 1:
nmovemnent = ANTI CLOCKW SE;
br eak;
case 2:
movenment = CLOCKW SE;
br eak;
case 4:
movenent = KEYPRESSED;
br eak;
}
br eak;
case 1:
switch (PA delta_t){
case 3:
novenent = ANTI CLOCKW SE;
br eak;
case 0:
movermrent = CLOCKW SE;
br eak;
}
br eak;
case 2:
switch (PA_delta_t){
case 0:
nmovenent = ANTI CLOCKW SE;
br eak;
case 3:
novenent = CLOCKW SE;
br eak;
}
br eak;
case 3:
switch (PA_delta_t){
case 2:
nmovement = ANTI CLOCKW SE;
br eak;
case 1:
movenment = CLOCKW SE;
br eak;




}

case 4:
movenent = KEYPRESSED;
br eak;

Driver entry points such as read() and pol | () operate in tandem with rol | er _i nterrupt () . For example,
when the handler deciphers wheel movement, it wakes up any waiting pol | () threads that may have gone to
sleep in response to a sel ect () system call issued by an application such as X Windows. Revisit Listing 4.1 and
implement the complete roller driver after learning the internals of character drivers in Chapter 5.

Listing 7.3 in Chapter 7, "Input Drivers," takes advantage of the kernel's input interface to convert this roller
wheel into a roller mouse.

Let's end this section by introducing some functions that enable and disable interrupts on a particular IRQ.
enabl e_i rq( ROLLER_| RQ) enables interrupt generation when the roller wheel moves, while

di sabl e_i rq( ROLLER_| RQ) does the reverse. di sabl e_i rg_nosync( ROLLER | RQ disables roller interrupts but
does not wait for any currently executing instance of rol I er _i nterrupt () to return. This nosync flavor of

di sabl e_irq() is faster but can potentially cause race conditions. Use this only when you know that there can
be no races. An example user of di sabl e_i rq_nosync() is drivers/ide/ide-io.c, which blocks interrupts during
initialization, because some systems have trouble with that.

Softirgs and Tasklets

As discussed previously, interrupt handlers have two conflicting requirements: They are responsible for the bulk
of device data processing, but they have to exit as fast as possible. To bail out of this situation, interrupt
handlers are designed in two parts: a hurried and harried top half that interacts with the hardware, and a
relaxed bottom half that does most of the processing with all interrupts enabled. Unlike interrupts, bottom
halves are synchronous because the kernel decides when to execute them. The following mechanisms are
available in the kernel to defer work to a bottom half: softirgs, tasklets, and work queues.

Softirgs are the basic bottom half mechanism and have strong locking requirements. They are used only by a
few performance-sensitive subsystems such as the networking layer, SCSI layer, and kernel timers. Tasklets are
built on top of softirgs and are easier to use. It's recommended to use tasklets unless you have crucial
scalability or speed requirements. A primary difference between a softirq and a tasklet is that the former is
reentrant whereas the latter isn't. Different instances of a softirq can run simultaneously on different processors,
but that is not the case with tasklets.

To illustrate the usage of softirgs and tasklets, assume that the roller wheel in the previous example has
inherent hardware problems due to the presence of moving parts (say, the wheel gets stuck occasionally)
resulting in the generation of out-of-spec waveforms. A stuck wheel can continuously generate spurious
interrupts and potentially freeze the system. To get around this problem, capture the wave stream, run some
analysis on it, and dynamically switch from interrupt mode to a polled mode if the wheel looks stuck, and vice
versa if it's unstuck. Capture the wave stream from the interrupt handler and perform the analysis from a
bottom half. Listing 4.2 implements this using softirgs, and Listing 4.3 uses tasklets. Both are simplified variants
of Listing 4.1. This reduces the handler to two functions: rol | er _capt ure() that obtains a wave snippet from
GPIO Port D, and rol | er _anal yze() that runs an algorithmic analysis on the wave and switches to polled mode
if required.

Listing 4.2. Using Softirgs to Offload Work from Interrupt Handlers



Code View:

void __init
roller_init()
{

[* ...

/* Open the softirg. Add an entry for ROLLER SOFT_IRQ in
the enumlist in include/linux/interrupt.h */
open_softirq(ROLLER SOFT_IRQ roller_analyze, NULL);
}

/* The bottom hal f */
voi d
rol |l er_anal yze()

{
}

/* The interrupt handler */
static irqgreturn_t
roller_interrupt(int irqg, void *dev_id)

{

/* Analyze the wavefornms and switch to polled node if required */

/* Capture the wave stream*/
rol l er_capture();

/* Mark softirqg as pending */
rai se_softirq(ROLLER_SOFT_I RQ ;

return | RQ HANDLED;
}

To define a softirq, you have to statically add an entry to include/linux/interrupt.h. You can't define one
dynamically. rai se_softirqg() announces that the corresponding softirq is pending execution. The kernel will
execute it at the next available opportunity. This can be during exit from an interrupt handler or via the
ksoftirqd kernel thread.

Listing 4.3. Using Tasklets to Offload Work from Interrupt Handlers



Code View:
struct roller_device_struct { /* Device-specific structure */

[* ...
struct tasklet_struct tsklt;
[* ...
}
void __init roller_init()
{
struct roller_device_struct *dev_struct;
[* ...
/* Initialize tasklet */
taskl et _init(&Jev_struct->tsklt, roller_anal yze, dev);
}

/* The bottom hal f */

voi d

roll er_anal yze()

{

/* Anal yze the waveforms and switch to
polled nmode if required */

}

/[* The interrupt handler */

static irqgreturn_t

roller_interrupt(int irqg, void *dev_id)

{

struct roller_device_struct *dev_struct;

/* Capture the wave stream*/
rol l er_capture();

/* Mark tasklet as pending */
taskl et _schedul e(&dev_struct->tsklt);

return | RQ HANDLED;

taskl et _init () dynamically initializes a tasklet. The function does not allocate memory for a t askl et _struct,
rather you have to pass the address of an allocated one. t askl et _schedul e() announces that the
corresponding tasklet is pending execution. Like for interrupts, the kernel offers a bunch of functions to control
the execution state of tasklets on systems having multiple processors:

e taskl et _enabl e() enables tasklets.

e taskl et_di sabl e() disables tasklets and waits until any currently executing tasklet instance has exited.

e taskl et _di sabl e_nosync() has semantics similar to di sabl e_i r g_nosync() . The function does not wait
for active instances of the tasklet to finish execution.



You have seen the differences between interrupt handlers and bottom halves, but there are a few similarities,
too. Interrupt handlers and tasklets are both not reentrant. And neither of them can go to sleep. Also, interrupt
handlers, tasklets, and softirgs cannot be preempted.

Work queues are a third way to defer work from interrupt handlers. They execute in process context and are
allowed to sleep, so they can use drowsy functions such as mutexes. We discussed work queues in the
preceding chapter when we looked at various kernel helper facilities. Table 4.1 compares softirgs, tasklets, and
work queues.

Table 4.1. Comparing Softirqgs, Tasklets, and Work Queues

Softirgs Tasklets Work Queues
Execution Deferred work runs in Deferred work runs in Deferred work runs in
context interrupt context. interrupt context. process context.
Reentrancy Can run simultaneously Cannot run Can run simultaneously
on different CPUs. simultaneously on on different CPUs.

different CPUs. Different
CPUs can run different
tasklets, however.

Sleep Cannot go to sleep. Cannot go to sleep. May go to sleep.
semantics
Preemption Cannot be Cannot be May be

preempted/scheduled. preempted/scheduled. preempted/scheduled.
Ease of use Not easy to use. Easy to use. Easy to use.

When to use If deferred work will not If deferred work will not If deferred work may go
go to sleep and if you go to sleep. to sleep.
have crucial scalability
or speed requirements.

There is an ongoing debate in LKML on the feasibility of getting rid of the tasklet interface. Tasklets
enjoy more priority than process context code, so they present latency problems. Moreover, as you
learned, they are constrained not to sleep and to execute on the same CPU. It's being suggested that all
existing tasklets be converted to softirgs or work queues on a case-by-case basis.

The —rt patch-set alluded to in Chapter 2 moves interrupt handling to kernel threads to achieve wider
preemption coverage.



The Linux Device Model

The new Linux device model introduces C++-like abstractions that factor out commonalities from device drivers
into bus and core layers. Let's look at the different components constituting the device model such as udev,
sysfs, kobjects, and device classes and their effects on key kernel subsystems such as /dev node management,
hotplug, firmware download, and module autoload. Udev is the best vantage point to view the benefits of the
device model, so let's start from there.

Udev

Years ago when Linux was young, it was not fun to administer device nodes. All the needed nodes (which could
run into thousands) had to be statically created under the /dev directory. This problem, in fact, dated all the
way back to original UNIX systems. With the advent of the 2.4 kernels came devfs, which introduced dynamic
device node creation. Devfs provided services to generate device nodes in an in-memory filesystem, but the
onus of naming the nodes still rested with device drivers. Device naming policy is administrative and does not
mix well with the kernel, however. The place for policy is in header files, kernel module parameters, or user
space. Udev arrived on the scene to push device management to user space.

Udev depends on the following to do its work:

1. Kernel sysfs support, which is an important part of the Linux device model. Sysfs is an in-memory
filesystem mounted under /sys at boot time (look at /etc/fstab for the specifier). We will look at sysfs in
the next section, but for now, take the corresponding sysfs file accesses for granted.

2. A set of user-space daemons and utilities such as udevd and udevinfo.

3. User-specified rules located in the /etc/udev/rules.d/ directory. You may frame rules to get a consistent
view of your devices.

To understand how to use udev, let's look at an example. Assume that you have a USB DVD drive and a USB
CD-RW drive. Depending on the order in which you hotplug these devices, one of them is assigned the name
/dev/sr0, and the other gets the name /dev/srl. During pre-udev days, you had to figure out the associated
names before you could use the devices. But with udev, you can consistently view the DVD (as say,
/dev/usbdvd) and the CD-RW (as say, /dev/usbcdrw) irrespective of the order in which they are plugged in or
out.

First, pull product attributes from corresponding files in sysfs. Assume that the (Targus) DVD drive has been
assigned the device node /dev/srO and that the (Addonics) CD-RW drive has been given the name /dev/srl. Use
udevi nf o to collect device information:

Code View:
bash> udevinfo -a -p /sys/block/sr0

| ooki ng at the device chain at

'/ sys/ devi ces/ pci 0000: 00/ 0000: 00: 1d. 7/ usb1/ 1-4":
BUS=»usb»
| D=»1-4»
SYSFS{ bConf i gur ati onVal ue} =»1»



SYSFS{i dProduct } =»0701»

SYSFS{i dVendor } =»05e3»

SYSFS{ manuf act ur er } =»Genesysl ogi ¢»
SYSFS{ maxchi | d} =»0»

SYSFS{ pr oduct } =»USB Mass Storage Devi ce»

bash> udevinfo -a -p /sys/block/srl

| ooki ng at the device chain at

'/ sys/ devi ces/ pci 0000: 00/ 0000: 00: 1d. 7/ usb1/ 1-3":
BUS=»ushb»

| D=»1- 3»

SYSFS{ bConfi gur ati onVal ue} =»2»

SYSFS{i dPr oduct } =»0302»

SYSFS{i dVendor } =»0dbf »

SYSFS{ manuf act ur er } =»Addoni cs»
SYSFS{ maxchi | d} =»0»

SYSFS{ product } =»USB to | DE Cabl e»

Next, let's use the product information gleaned to identify the devices and add udev naming rules. Create a file
called /etc/udev/rules.d/40-cdvd.rules and add the following rules to it:

BUS="usb", SYSFS{i dProduct}="0701", SYSFS{idVendor}="05e3",
KERNEL="sr[0-9] *", NAME="9%", SYM.|NK="usbdvd"

BUS="usb", SYSFS{i dProduct}="0302", SYSFS{i dVendor}="0dbf",
KERNEL="sr[0-9] *", NAME="9%", SYM.|NK="usbcdrw"

The first rule tells udev that whenever it finds a USB device with a product ID of 0x0701, vendor ID of 0x05e3,
and a name starting with sr, it should create a node of the same name under /dev and produce a symbolic link
named usbdvd to the created node. Similarly, the second rule orders creation of a symbolic link named usbcdrw
for the CD-RW drive.

To test for syntax errors in your rules, run udevtest on /sys/block/sr*. To turn on verbose messages in
/var/log/messages, set udev_| og to "yes" in /etc/udev/udev.conf. To repopulate the /dev directory with newly
added rules on-the-fly, restart udev using udevstart. When this is done, your DVD drive consistently appears to
the system as /dev/usbdvd, and your CD-RW drive always appears as /dev/usbcdrw. You can deterministically
mount them from shell scripts using commands such as these:

nmount /dev/usbdvd /mt/dvd
Consistent naming of device nodes (and network interfaces) is not the sole capability of udev. It has
metamorphed into the Linux hotplug manager, too. Udev is also in charge of automatically loading modules on

demand and downloading microcode onto devices that need them. But before digging into those capabilities,
let's obtain a basic understanding of the innards of the device model.

Sysfs, Kobjects, and Device Classes



Sysfs, kobjects, and device classes are the building blocks of the device model but are publicity shy and prefer
to remain behind the scenes. They are mostly in the usage domain of bus and core implementations, and hide
inside APIs that provide services to device drivers.

Sysfs is the user-space manifestation of the kernel's structured device model. It's similar to procfs in that both
are in-memory filesystems containing information about kernel data structures. Whereas procfs is a generic
window into kernel internals, sysfs is specific to the device model. Sysfs is, hence, not a replacement for procfs.
Information such as process descriptors and sysctl parameters belong to procfs and not sysfs. As will be
apparent soon, udev depends on sysfs for most of its extended functions.

Kobjects introduce an encapsulation of common object properties such as usage reference counts. They are
usually embedded within larger structures. The following are the main fields of a kobject, which is defined in
include/linux/kobject.h:

1. A kref object that performs reference count management. The kref _i nit () interface initializes a kref,
kref _get () increments the reference count associated with the kref, and kr ef _put () decrements the
reference count and frees the object if there are no remaining references. The URB structure (explained in
Chapter 11, "Universal Serial Bus"), for example, contains a kref to track the number of references to it.[2]

[2]1 The usb_al | oc_urb() interface calls kref _i nit (), usb_submnit_urb() invokes kref _get (), and usb_free_urb() calls
kref _put ().

2. A pointer to a kset, which is an object set to which the kobject belongs.

3. A kobj_type, which is an object type that describes the kobject.

Kobjects are intertwined with sysfs. Every kobject instantiated within the kernel has a sysfs representation.

The concept of device classes is another feature of the device model and is an interface you're more likely to
use in a driver. The class interface abstracts the idea that each device falls under a broader class (or category)
of devices. A USB mouse, a PS/2 keyboard, and a joystick all fall under the input class and own entries under
/sys/class/input/.

Figure 4.4 shows the sysfs hierarchy on a laptop that has an external USB mouse connected to it. The top-level
bus, class, and device directories are expanded to show that sysfs provides a view of the USB mouse based on
its device type as well as its physical connection. The mouse is an input class device but is physically a USB
device answering to two endpoint addresses, a control endpoint ep00, and an interrupt endpoint, ep81. The USB
port in question belongs to the USB host controller on bus 2, and the USB host controller itself is bridged to the
CPU via the PCI bus. If these details are not making much sense at this point, don't worry; rewind to this
section after reading the chapters that teach input drivers (Chapter 7), PCI drivers (Chapter 10, "Peripheral
Component Interconnect"), and USB drivers (Chapter 11).

Figure 4.4. Sysfs hierarchy of a USB mouse.



Code View:
[/sys]
+[ bl ock]
- [ bus] —fusb] —fdevi ces] fusb2] —f2-2] -£2- 2: 1. 0] - [ usbendpoi nt : usbdev2. 2- ep81]
-[class]-[input] —fnmuse2] —fdevi ce] fbus] —fusbendpoi nt : usbdev2. 2- ep81]
-[usb_devi ce] fusbdev2. 2] —fdevi ce] —f bus]
-[usb_endpoi nt] fusbdev2. 2- ep00] —f devi ce]
—fusbdev?2. 2- ep81] —fdevi ce]
-[ devi ces] —Fpci 0000: 00] - 0000: 00: 1d: 1] Fusb2] —f2-2] —F2-2: 1. 0]
+[ firmare]
+[fs]
+[ ker nel ]
+[ nodul e]
+[ power ]

Browse through /sys looking for entries that associate with another device (for example, your network card) to
get a better feel of its hierarchical organization. The section "Addressing and Identification" in Chapter 10
illustrates how sysfs mirrors the physical connection of a CardBus Ethernet-Modem card on a laptop.

The class programming interface is built on top of kobjects and sysfs, so it's a good place to start digging to
understand the end-to-end interactions between the components of the device model. Let's turn to the RTC
driver for an example. The RTC driver (drivers/char/rtc.c) is a miscellaneous (or "misc") driver. We discuss misc
drivers in detail when we look at character device drivers in Chapter 5.

Insert the RTC driver module and look at the nodes created under /sys and /dev:

bash> nodprobe rtc

bash> I's -1 R /sys/class/ m sc

drwr-xr-x 2 root root 0 Jan 15 01:23 rtc
/sys/class/ msc/rtc:

total O

-r--r--r-- 1 root root 4096 Jan 15 01: 23 dev
e We- - - 1 root root 4096 Jan 15 01: 23 uevent
bash> |s -1 /dev/rtc

Crwr--r-- 1 root root 10, 135 Jan 15 01:23 /dev/rtc

/sys/class/misc/rtc/dev contains the major and minor numbers (discussed in the next chapter) assigned to this
device, /sys/class/misc/rtc/uevent is used for coldplugging (discussed in the next section), and /dev/rtc is used
by applications to access the RTC driver.

Let's understand the code flow through the device model. Misc drivers utilize the services of m sc_regi ster ()
during initialization, which looks like this if you peel off some code:

[* .00 %
dev = MKDEV(M SC_MAJOR, mi sc->m nor);

m sc->cl ass = cl ass_devi ce_create(m sc_class, NULL, dev,
m sc->dev,
"o8", msc->nane);
if (IS_ERR(m sc->class)) {
err = PTR_ERR(m sc->cl ass);
goto out;



}
I* o]

Figure 4.5 continues to peel off more layers to get to the bottom of the device modeling. It illustrates the
transitions that ripple through classes, kobjects, sysfs, and udev, which result in the generation of the /sys and
/dev files listed previously.

Figure 4.5. Tying the pieces of the device model.
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Look at the parallel port LED driver (Listing 5.6 in the section "Talking to the Parallel Port" in Chapter 5) and the
virtual mouse input driver (Listing 7.2 in the section "Device Example: Virtual Mouse" in Chapter 7) for
examples on creating device control files inside sysfs.

Another abstraction that is part of the device model is the bus-device-driver programming interface. Kernel
device support is cleanly structured into buses, devices, and drivers. This renders the individual driver
implementations simpler and more general. Bus implementations can, for example, search for drivers that can
handle a particular device.

Consider the kernel's 12C subsystem (explored in Chapter 8, "The Inter-Integrated Circuit Protocol"). The 12C
layer consists of a core infrastructure, device drivers for bus adapters, and drivers for client devices. The 12C



core layer registers each detected 12C bus adapter using bus_regi st er () . When an 12C client device (say, an
Electrically Erasable Programmable Read-Only Memory [EEPROM] chip) is probed and detected, its existence is
recorded via devi ce_r egi st er (). Finally, the 12C EEPROM client driver registers itself using

driver _register(). These registrations are performed indirectly using service functions offered by the 12C
core.

bus_regi ster() adds a corresponding entry to /sys/bus/, while devi ce_r egi st er () adds entries under
/sys/devices/. struct bus_type, struct device, and struct devi ce_driver are the main data structures
used respectively by buses, devices, and drivers. Take a peek inside include/linux/device.h for their definitions.

Hotplug and Coldplug

Devices connected to a running system on-the-fly are said to be hotplugged, whereas those connected prior to
system boot are considered to be coldplugged. Earlier, the kernel used to notify user space about hotplug
events by invoking a helper program registered via the /proc filesystem. But when current kernels detect
hotplug, they dispatch uevents to user space via netlink sockets. Netlink sockets are an efficient mechanism to
communicate between kernel space and user space using socket APIs. At the user-space end, udevd, the
daemon that manages device node creation and removal, receives the uevents and manages hotplug.

To see how hotplug handling has evolved recently, let's consider progressive levels of udev
running different versions of the 2.6 kernel:

1. With a udev-039 package and a 2.6.9 kernel, when the kernel detects a hotplug event, it
invokes the user space helper registered with /proc/sys/kernel/hotplug. This defaults to
/sbin/hotplug, which receives attributes of the hotplugged device in its environment.
/sbin/hotplug looks inside the hotplug configuration directory (usually
/etc/hotplug.d/default/) and runs, for example, /etc/hotplug.d/default/10-udev.hotplug, after
executing other scripts under /etc/hotplug/.

bash> I's -1 /etc/hotplug.d/ defaul t/

I rwerwxrwx 1 root root 14 May 11 2005 10-udev. hotplug -> /sbin/udevsend

When /sbin/udevsend thus gets executed, it passes the hotplugged device information to
udevd.

2. With udev-058 and a 2.6.11 kernel, the story changes somewhat. The udevsend utility
replaces /sbin/hotplug:

bash> cat /proc/sys/kernel/hotplug
/ sbi n/ udevsend

3. With the latest levels of udev and the kernel, udevd assumes full responsibility of managing
hotplug without depending on udevsend. It now pulls hotplug events directly from the kernel
via netlink sockets (see Figure 4.4). /proc/sys/kernel/hotplug contains nothing:

bash> cat /proc/sys/kernel/hotpl ug
bash>




Udev also handles coldplug. Because udev is part of user space and is started only after the kernel boots, a
special mechanism is needed to emulate hotplug events over coldplugged devices. At boot time, the kernel
creates a file named uevent under sysfs for all devices and emits coldplug events to those files. When udev
starts, it reads all the uevent files from /sys and generates hotplug uevents for each coldplugged device.

Microcode Download

You have to feed microcode to some devices before they can get ready for action. The microcode gets executed
by an on-card microcontroller. Device drivers used to store microcode inside static arrays in header files. But
this has become untenable because microcode is usually distributed as proprietary binary images by device
vendors, and that doesn't mix homogeneously with the GPL-ed kernel. Another reason against mixing firmware
with kernel sources is that they run on different release time lines. The solution apparently is to separately
maintain microcode in user space and pass it down to the kernel when required. Sysfs and udev provide an
infrastructure to achieve this.

Let's take the example of the Intel PRO/Wireless 2100 WiFi mini PCI card found on several laptops. The card is
built around a microcontroller that needs to execute externally supplied microcode for normal operation. Let's
walk through the steps that the Linux driver follows to download microcode to the card. Assume that you have
obtained the required microcode image (ipw2100-1.3.fw) from http://ipw2100.sourceforge.net/firmware.php
and saved it under /lib/firmware/ on your system and that you have inserted the driver module ipw2100.ko:

1. During initialization, the driver invokes the following:
request _firmmvare(..,"i pw2100-1.3.fw',..);
2. This dispatches a hotplug uevent to user space, along with the identity of the requested microcode image.

3. Udevd receives the uevent and responds by invoking /sbin/firmware_helper. For this, it uses a rule similar
to the following from a file under /etc/udev/rules.d/:

ACTI ON=="add", SUBSYSTEM=="firmare", RUN="/sbhin/firmvare_hel per"

4. /sbin/firmware_helper looks inside /lib/firmware/ and locates the requested microcode image ipw2100-
1.3.fw. It dumps the image to /sys/class/0000:02:02.0/data. (0000:02:02 is the PCI bus:device:function
identifier of the WiFi card in this case.)

5. The driver receives the microcode and downloads it onto the device. When done, it calls
rel ease_firmware() to free the corresponding data structures.

6. The driver goes through the rest of the initializations and the WiFi adapter beacons.

Module Autoload

Automatically loading kernel modules on demand is a convenient feature that Linux supports. To understand
how the kernel emits a "module fault"” and how udev handles it, let's insert a Xircom CardBus Ethernet adapter
into a laptop's PC Card slot:


http://ipw2100.sourceforge.net/firmware.php

1. During compile time, the identity of supported devices is generated as part of the driver module object.
Take a peek at the driver that supports the Xircom CardBus Ethernet combo card
(drivers/net/tulip/xircom_cb.c) and find this snippet:

static struct pci_device id xircompci _table[] = {
{0x115D, 0x0003, PCI _ANY_ID, PCI_ANY_ID,},

{0,},
s

/* Mark the device table */
MODULE_DEVI CE_TABLE( pci, xircompci_table);

This declares that the driver can support any card having a PCl vendor ID of 0x115D and a PCI device ID of
0x0003 (more on this in Chapter 10). When you install the driver module, the depmod utility looks inside
the module image and deciphers the IDs present in the device table. It then adds the following entry to
/lib/modules/kernel-version/modules.alias:

alias pci:v0000115Dd00000003sv*sd*bc*sc*i* xircomchb

where v stands for VendorlID, d for DevicelD, sv for subvendorID, and * for wildcard match.

2. When you hotplug the Xircom card into a CardBus slot, the kernel generates a uevent that announces the
identity of the newly inserted device. You may look at the generated uevent using udevmonitor:

bash> udevnonitor --env

MODALI AS=pci : v0000115Dd00000003sv0000115Dsd00001181bc02sc00i 00

3. Udevd receives the uevent via a netlink socket and invokes modprobe with the above MODALIAS that the
kernel passed up to it:

nodpr obe pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i 00

4. Modprobe finds the matching entry in /lib/modules/kernel-version/modules.alias created during Step 1,
and proceeds to insert xircom_cb:

bash> | snod
Modul e Si ze Used by
Xircomchb 10433 O

The card is now ready to surf.

You may want to revisit this section after reading Chapter 10.



Udev on Embedded Devices

One school of thought deprecates the use of udev in favor of statically created device nodes on
embedded devices for the following reasons:

e Udev creates /dev nodes during each reboot, compared to static nodes that are created only
once during software install. If your embedded device uses flash storage, flash pages that
hold /dev nodes suffer an erase-write cycle on each boot in the case of the former, and this
reduces flash life span. (Flash memory is discussed in detail in Chapter 17, "Memory
Technology Devices.™) You do have the option of mounting /dev over a RAM-based
filesystem, however.

e Udev contributes to increased boot time.

e Udev features such as dynamic creation of /dev nodes and autoloading of modules create a
degree of indeterminism that some solution designers prefer to avoid on special-purpose
embedded devices, especially ones that do not interact with the outside world via
hotpluggable buses. According to this point of view, static node creation and boot-time
insertion of any modules provide more control over the system and make it easier to test.




Memory Barriers

Many processors and compilers reorder instructions to achieve optimal execution speeds. The reordering is done
such that the new instruction stream is semantically equivalent to the original one. However, if you are, for
example, writing to memory mapped registers on an 1/0 device, instruction reordering can generate unexpected
side effects. To prevent the processor from reordering instructions, you can insert a barrier in your code. The
wrb() function inserts a road block that prevents writes from moving through it, r nb() provides a read
barricade that disallows reads from crossing it, and nb() results in a read-write barrier.

In addition to the CPU-to-hardware interactions referred to previously, memory barriers are also relevant for
CPU-to-CPU interactions on SMP systems. If your CPU's data cache is operating in write-back mode (in which
data is not copied from cache to memory until it's absolutely necessary), you might want to stall the instruction
stream until the cache-to-memory queue is drained. This is relevant, for example, when you encounter
instructions that acquire or release locks. Barriers are used in this scenario to obtain a consistent perception
across CPUs.

We revisit memory barriers when we discuss PCI drivers in Chapter 10 and flash map drivers in Chapter 17. In
the meanwhile, stop by Documentation/memory-barriers.txt for an explanation of different kinds of memory
barriers.



Power Management

Power management is critical on devices running on battery, such as laptops and handhelds. Linux drivers need
to be aware of power states and have to transition across states in response to events such as standby, sleep,
and low battery. Drivers utilize power-saving features supported by the underlying hardware when they switch
to modes that consume less power. For example, the storage driver spins down the disk, whereas the video
driver blanks the display.

Power-aware code in device drivers is only one piece of the overall power management framework. Power
management also features participation from user space daemons, utilities, configuration files, and boot
firmware. Two popular power management mechanisms are APM (discussed in the section, "Protected Mode
Calls" in Appendix B, "Linux and the BIOS™) and Advanced Configuration and Power Interface (ACPI). APM is
getting obsolete, and ACPI has emerged as the de facto power management strategy on Linux systems. ACPI is
further discussed in Chapter 20, "More Devices and Drivers."



Looking at the Sources

The core interrupt handling code is generic and is in the kernel/irg/ directory. The architecture-specific portions
can be found in arch/your-arch/kernel/irg.c. The function do_I| RQ() defined in this file is a good place to start
your journey into the kernel interrupt handling mechanism.

The kernel softirq and tasklet implementations live in kernel/softirg.c. This file also contains additional functions
that offer more fine-grained control over softirqs and tasklets. Look at include/linux/interrupt.h for softirq vector
enumerations and prototypes required to implement your interrupt handler. For a real-life example of writing
interrupt handlers and bottom halves, start from the handler that is part of drivers/net/lib8390.c and follow the
trail into the networking stack.

The kobject implementation and related programming interfaces live in lib/kobject.c and
include/linux/kobject.h. Look at drivers/base/sys.c for the sysfs implementation. You will find device class APIs
in drivers/base/class.c. Dispatching hotplug uevents via netlink sockets is done by lib/kobject_uevent.c. You
may download udev sources and documentation from www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

For a fuller understanding of how APM is implemented on x86 Linux, look at arch/x86/kernel/apm_32.c,
include/linux/apm_bios.h, and include/asm-x86/mach-default/apm.h in the kernel tree. If you are curious to
know how APM is implemented on BIOS-less architectures such as ARM, look at include/linux/apm-emulation.h
and its users. The kernel's ACPIl implementation lives in drivers/acpi/.

Table 4.2 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 4.3 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 4.2. Summary of Data Structures

Data Structure Location Description

taskl et _struct include/linux/interrupt.h Manages a tasklet, which is a method to
implement bottom halves

kobj ect include/linux/kobject.h Encapsulates common properties of a
kernel object

kset include/linux/kobject.h An object set to which a kobject belongs

kobj type include/linux/kobject.h An object type that describes a kobject

cl ass include/linux/device.h Abstracts the idea that a driver falls

under a broader category

bus devi ce include/linux/device.h Structures that form the pillars under the
devi ce_dri ver Linux device model

Table 4.3. Summary of Kernel Programming Interfaces
Kernel Interface Location Description

request _irq() kernel/irg/manage.c Requests an IRQ and associates an
interrupt handler with it

free_irq() kernel/irg/manage.c Frees an IRQ



Kernel Interface

Location

Description

di sable_irq()

di sabl e_i rg_nosync()

enabl e_irq()

open_softirq()

rai se_softirq()

tasklet _init()

t askl et _schedul e()
t askl et _enabl e()
taskl et _di sabl e()

t askl et _di sabl e_nosync()

cl ass_device_register()
kobj ect _add()
sysfs_create_dir()

cl ass_devi ce_create()

cl ass_devi ce_destroy()
class_create()
cl ass_destroy()

class_device_create_file()

sysfs_create file()
class_devi ce_add_attrs()
kobj ect _uevent ()

kernel/irg/manage.c

kernel/irg/manage.c

kernel/irg/manage.c

kernel/softirg.c

kernel/softirg.c

kernel/softirg.c
include/linux/interrupt.hkernel/softirqg.c
include/linux/interrupt.h
include/linux/interrupt.h

include/linux/interrupt.h

drivers/base/class.c
lib/kobject.c
lib/kobject_uevent.c
fs/sysfs/dir.c
fs/sysfs/file.c

Disables the interrupt associated with
a supplied IRQ

Disables the interrupt associated with
a supplied IRQ without waiting for
any currently executing instances of
the interrupt handler to return

Re-enables the interrupt that has
been disabled using di sabl e_irq()
or di sabl e_i rg_nosync()

Opens a softirq

Marks the softirg as pending
execution

Dynamically initializes a tasklet
Marks a tasklet as pending execution
Enables a tasklet

Disables a tasklet

Disables a tasklet without waiting for
active instances to finish execution

Family of functions in the Linux
device model that create/destroy a
class, device class, and associated
kobjects and sysfs files

This finishes our exploration of device driver concepts. You might want to dip back into this chapter while

developing your driver.
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You are now all set to make a foray into writing simple, albeit real-world, device drivers. In this
chapter, let's look at the internals of a character (or char) device driver, which is kernel code that
sequentially accesses data from a device. Char drivers can capture raw data from several types of
devices: printers, mice, watchdogs, tapes, memory, RTCs, and so on. They are however, not
suitable for managing data residing on block devices capable of random access such as hard disks,
floppies, or compact discs.

Char Driver Basics




Let's start with a top-down view. To access a char device, a system user invokes a suitable application program.
The application is responsible for talking to the device, but to do that, it needs to elicit the identity of a suitable
driver. The contact details of the driver are exported to user space via the /dev directory:

bash> |s -1 /dev

total O

CrwW------ 1 root root 5, 1 Jul 16 10: 02 consol e

| rwWXr wWxr wx 1 root root 3 Gt 6 10:02 cdrom -> hdc
brw rw--- 1 root disk 3, 0 Cct 6 2007 hda

brw rw --- 1 root disk 3, 1 Gt 6 2007 hdal
CrwW------ 1 root tty 4, 1 Ot 6 10:20 ttyl
CrwW------ 1 root tty 4, 2 Cct 6 10:02 tty2

The first character in each line of the | s output denotes the driver type: ¢ signifies a char driver, b stands for a
block driver, and | denotes a symbolic link. The numbers in the fifth column are called major numbers, and
those in the sixth column are minor numbers. A major number broadly identifies the driver, whereas a minor
number pinpoints the exact device serviced by the driver. For example, the IDE block storage driver /dev/hda
owns a major number of 3 and is in charge of handling the hard disk on your system, but when you further
specify a minor number of 1 (/dev/hdal), that narrows it down to the first disk partition. Char and block drivers
occupy different spaces, so you can have same major number assigned to a char as well as a block driver.

Let's take a step further and peek inside a char driver. From a code-flow perspective, char drivers have the
following:
¢ An initialization (or i ni t ()) routine that is responsible for initializing the device and seamlessly tying the

driver to the rest of the kernel via registration functions.

¢ A set of entry points (or methods) such as open(),read(),ioctl(),|lseek(),andwite(), which
directly correspond to 1/0 system calls invoked by user applications over the associated /dev node.

e Interrupt routines, bottom halves, timer handlers, helper kernel threads, and other support infrastructure.
These are largely transparent to user applications.

From a data-flow perspective, char drivers own the following key data structures:

1. A per-device structure. This is the information repository around which the driver revolves.

2. struct cdev, a kernel abstraction for character drivers. This structure is usually embedded inside the per-
device structure referred previously.

3. struct file_operations, which contains the addresses of all driver entry points.

4. struct file, which contains information about the associated /dev node.
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Let's take a step further and peek inside a char driver. From a code-flow perspective, char drivers have the
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¢ An initialization (or i ni t ()) routine that is responsible for initializing the device and seamlessly tying the

driver to the rest of the kernel via registration functions.

¢ A set of entry points (or methods) such as open(),read(),ioctl(),|lseek(),andwite(), which
directly correspond to 1/0 system calls invoked by user applications over the associated /dev node.

e Interrupt routines, bottom halves, timer handlers, helper kernel threads, and other support infrastructure.
These are largely transparent to user applications.

From a data-flow perspective, char drivers own the following key data structures:

1. A per-device structure. This is the information repository around which the driver revolves.

2. struct cdev, a kernel abstraction for character drivers. This structure is usually embedded inside the per-
device structure referred previously.

3. struct file_operations, which contains the addresses of all driver entry points.

4. struct file, which contains information about the associated /dev node.






Device Example: System CMOS

Let's implement a char driver to access the system CMOS. The BIOS on PC-compatible hardware (see Figure
5.1) uses the CMOS to store information such as startup options, boot order, and the system date, which you
can configure via the BIOS setup menu. Our example CMOS driver lets you access the two PC CMOS banks as
though they are regular files. Applications can operate on /dev/cmos/0 and /dev/cmos/1, and use 1/0 system
calls to access data from the two banks. Because the BIOS assigns semantics to the CMOS area at bit-level
granularity, the driver is capable of bit-level access. So, a read() obtains the specified number of bits and

advances the internal file pointer by the number of bits read.

Figure 5.1. CMOS on a PC-compatible system.

Processor

Morth Bridge

South Bridge

CMOS

The CMOS is accessed via two 1/0 addresses, an index register and a data register, as shown in Table 5.1. You
have to specify the desired CMOS memory offset in the index register and exchange information via the data
register.

Table 5.1. Register Layout on the CMOS

Register Name Description

CMOS_BANKO_ | NDEX_PORT Specify the desired CMOS bank 0 offset in this register.

CMOS_BANKO_DATA PORT Read/write data from/to the address specified in
CMOS_BANKO_| NDEX_PORT.

CMOS_BANK1_ | NDEX_PORT Specify the desired CMOS bank 1 offset in this register.

CMOS_BANK1_DATA PORT Read/write data from/to the address specified in

CMOS_BANK1_| NDEX_PORT.

Because each driver method has a system call counterpart that applications use, we will look at the system calls
and the matching driver methods in tandem.



Driver Initialization

The driver i ni t () method is the bedrock of the registration mechanism. It's responsible for the following:

¢ Requesting allocation of device major numbers.

¢ Allocating memory for the per-device structure.

e Connecting the entry points (open(), read(), and so on) with the char driver's cdev abstraction.

e Associating the device major number with the driver's cdev.

e Creating nodes under /dev and /sys. As discussed in Chapter 4, "Laying the Groundwork," /dev
management has meandered from static device nodes in the 2.2 kernels, to dynamic names in 2.4, and
further to a user-space policy daemon (udevd) in 2.6.

¢ Initializing the hardware. This is not relevant for our simple CMOS.

Listing 5.1 implements the CMOS driver's i ni t () method.

Listing 5.1. CMOS Driver Initialization

Code View:
#i ncl ude <linux/fs. h>

/* Per-device (per-bank) structure */
struct cnos_dev {
unsi gned short current_pointer; /* Current pointer within the

bank */
unsi gned int size; /* Size of the bank */
i nt bank_nunber ; /* CMOS bank nunber */
struct cdev cdev; /* The cdev structure */
char nane[ 10] ; /* Name of 1/Oregion */
[* .0 *] /* Mut exes, spinlocks, wait
gueues, .. */

} *cnps_devp;

/* File operations structure. Defined in linux/fs.h */
static struct file_operations cnbs_fops = {

. owner = TH S_MODULE, /* Onner */
. open = cnos_open, /* Open nethod */
.release = cnos_rel ease, /* Rel ease nethod */
. read = cnos_read, /* Read net hod */
.write = cnmos_wite, /* Wite nmethod */
.11 seek = cnmos_| | seek, /* Seek nethod */
.ioctl = cnos_ioctl, /* loctl nethod */
b
static dev_t cnps_dev_nunber; /* Allotted device nunber */

struct class *cnmps_cl ass; /* Tie with the device nodel */




#def i ne NUM_CMOS_BANKS 2

#def i ne CMOS_BANK_SI ZE (OxFF*8)
#defi ne DEVI CE_NAME "cnos"
#defi ne CMOS_BANKO_I NDEX_PORT  0x70
#def i ne CMOS_BANKO_DATA PORT 0x71
#defi ne CMOS_BANK1 | NDEX PORT  0x72
#def i ne CMOS_BANKL_DATA PORT 0x73

unsi gned char addr ports[ NUM CMOS_BANKS] = { CMOS_BANKO_| NDEX_ PORT,
CMOS_BANK1_| NDEX_PORT, } ;

unsi gned char dat aports[ NUM CMOS_BANKS] = { CMOS_BANKO_DATA_PORT,
CMOS_BANK1_DATA PORT, };

/*

* Driver Initialization
*/

int _init

cnmos_i nit(void)

{

int i;

/* Request dynamic allocation of a device nmjor nunber */
if (alloc_chrdev_region(&nos_dev_nunber, O,
NUM_CMOS_BANKS, DEVI CE_NAME) < 0) {
print k(KERN_DEBUG "Can't register device\n"); return -1,
}

/* Popul ate sysfs entries */
cmos_cl ass = cl ass_create(TH S_MODULE, DEVI CE_NAME) ;

for (i=0; i<NUM CMOS BANKS; i++) {
/* Allocate nenory for the per-device structure */
cnos_devp = kmal | oc(si zeof (struct cnps_dev), GFP_KERNEL);
if (!cnos_devp) {
printk("Bad Kmalloc\n"); return 1;

}

/* Request 1/Oregion */

sprintf(cnos_devp->nane, "cnos%", i);

if (!(request_region(addrports[i], 2, cnos_devp->nane)) {

printk("cms: I/O port Ox% is not free.\n", addrports[i]);
return —El G

}

/* Fill in the bank nunber to correlate this device
with the correspondi ng CMOS bank */

cnos_devp- >bank_nunber = i;

/* Connect the file operations with the cdev */
cdev_init (&cnos_devp->cdev, &cnos_fops);
cnos_devp- >cdev. owner = THI S_MODULE;

/* Connect the major/mnor nunber to the cdev */

i f (cdev_add(&cnos_devp->cdev, (dev_nunmber + i), 1)) {
printk("Bad cdev\in");
return 1;

}

/* Send uevents to udev, so it'll create /dev nodes */




cl ass_devi ce_create(cnos_cl ass, NULL, (dev_number + i),
NULL, "cnos%l", i);
}

printk("CMOS Driver Initialized.\n");
return O;

}

/* Driver Exit */
void __exit
cnmos_cl eanup(voi d)

{

int i;

/* Renove the cdev */
cdev_del (& nos_devp- >cdev);

/* Rel ease the nmajor nunber */
unr egi ster_chrdev_regi on( MAJOR(dev_nunber), NUM CMOS_BANKS) ;

/* Release I/ Oregion */

for (i=0; i<NUM CMOS BANKS; i++) {
cl ass_devi ce_destroy(cnos_cl ass, MKDEV(MAJOR(dev_nunber), i));
rel ease_regi on(addrports[i], 2);

}

/* Destroy cnos_class */

cl ass_destroy(cnos_cl ass);

return();

}

modul e_init(cnos_init);
nmodul e_exi t (cnos_cl eanup) ;

Most steps performed by cnps_i ni t () are generic, so if you remove references to CMOS data structures, you
may use Listing 5.1 as a template to develop other char drivers, too.

First, cnos_i nit () invokes al | oc_chrdev_regi on() to dynamically request an unused major number.
dev_nunber contains the allotted major number if the call is successful. The second and third arguments to
al  oc_chrdev_regi on() specify the start minor number and the number of supported minor devices,
respectively. The last argument is the device name used to identify the CMOS in /proc/devices:

bash> cat /proc/devices | grep cnos
253 cnos

253 is the dynamically allocated major number for the CMOS device. During pre-2.6 days, dynamic device node
allocation was not supported, so char drivers made calls to r egi st er _chrdev() to statically request specific
major numbers.

Before proceeding further down the code path, let's take a peek at the data structures used in Listing 5.1.
cnos_dev is the per-device data structure referred to earlier. cnos_f ops is the fi |l e_oper ati ons structure that
contains the address of driver entry points. cnos_f ops also has a field called owner that is set to TH S_MODULE,



the address of the driver module in question. Knowing the identity of the structure owner enables the kernel to
offload from the driver the burden of some housekeeping functions such as tracking the use-count when
processes open or release the device.

As you saw, the kernel uses an abstraction called cdev to internally represent char devices. Char drivers usually
embed their cdev inside their per-device structure. In our example, cdev sits inside cnos_dev. cnbs_init ()
loops over each supported minor device (CMOS bank in this case) allocating memory for the associated per-
device structure and, hence, for the cdev structure living inside it. cdev_i ni t () associates the file operations
(cnos_f ops) with the cdev, and cdev_add() connects the major/minor numbers allocated by

al l oc_chrdev_regi on() to the cdev.

cl ass_create() populates a sysfs entry for this device, and cl ass_devi ce_creat e() results in the generation
of two uevents: cmosO and cmosl. As you learned in Chapter 4, udevd listens to uevents and generates device
nodes after consulting its rules database. Add the following to the udev rules directory (/etc/udev/rules.d/) to
produce device nodes corresponding to the two CMOS banks (/dev/cmos/0 and /dev/cmos/1) on receiving the
respective uevents (cmosO and cmosl):

KERNEL="cnos[ 0-1] *", NAME="cnos/ %"

Device drivers that need to operate on a range of 1/0 addresses stake claim to the addresses via a call to
request _regi on(). This regulatory mechanism ensures that requests by others for the same region fail until
the occupant releases it via a call to r el ease_regi on() . request _regi on() is commonly invoked by 1/0 bus
drivers such as PCI and ISA to mark ownership of on-card memory in the processor's address space (more on
this in Chapter 10, "Peripheral Component Interconnect™). cnos_i ni t () requests access to the 1/0 region of
each CMOS bank by calling r equest _regi on() . The last argument to r equest _r egi on() is an identifier used by
/proc/ioports, so you will see this if you peek at that file:

bash> grep cnos /proc/ioports
0070-0071 : cnosO
0072-0073 : cnosl

This completes the registration process, and cnos_i ni t () prints out a message signaling its happiness.

Open and Release

The kernel invokes the driver's open() method when an application opens the corresponding device node. You
can trigger execution of cnos_open() by doing this:

bash> cat /dev/cnos/0

The kernel calls the r el ease() method when an application closes an open device. So when cat closes the file
descriptor attached to /dev/cmos/0 after reading the contents of CMOS bank 0, the kernel invokes
cnos_rel ease() .

Listing 5.2 shows the implementation of cnbs_open() and cnos_r el ease() . Let's take a closer look at
cnmos_open() . There are a couple of things worthy of note here. The first is the extraction of cnos_dev. The
inode passed as an argument to cnos_open() contains the address of the cdev structure allocated during
initialization. As shown in Listing 5.1, cdev is embedded inside cnps_dev. To elicit the address of the container
structure cnos_dev, cnps_open() uses the kernel helper function, cont ai ner _of () .

The other notable operation in cnpos_open() is the usage of the pri vat e_dat a field that is part of struct file,
the second argument. You can use this field (fi | e->pri vat e_dat a) as a placeholder to conveniently correlate
information from inside other driver methods. The CMOS driver uses this field to store the address of cnos_dev.



Look at cnos_r el ease() (and the rest of the methods) to see how pri vat e_dat a is used to directly obtain a
handle on the cnps_dev structure belonging to the corresponding CMOS bank.

Listing 5.2. Open and Release

Code View:
/*
* Open CMOS bank
*/
int
cnos_open(struct inode *inode, struct file *file)

{

struct cnos_dev *cnps_devp;

/* Get the per-device structure that contains this cdev */
cnos_devp = contai ner _of (i node->i _cdev, struct cnps_dev, cdev);

/* Easy access to cnps_devp fromrest of the entry points */
file->private_data = cnos_devp;

/* Initialize sone fields */
cnos_devp->si ze = CMOS_BANK_SI ZE;
cnos_devp- >current _pointer = 0;

return O;

}

/*

* Rel ease CMOS bank

*/

i nt

cnos_rel ease(struct inode *inode, struct file *file)

{

struct cnos_dev *cnos_devp = fil e->private_data;

/* Reset file pointer */
cnos_devp- >current _pointer

0,

return O;

}

Exchanging Data

read() and write() are the basic char driver methods responsible for exchanging data between user space and
the device. The extended read() /wite() family contains several other methods, too: f sync(), ai o_read(),
aio_wite(), and mmap().

The CMOS driver operates on a simple memory device and does not have to work through some of the
complexities faced by usual char drivers:

e CMOS data access routines do not need to sleep-wait for device 1/0 to complete, whereas r ead() and
write() methods belonging to many char drivers have to support both blocking and nonblocking modes of
operation. Unless a device file is opened in the nonblocking (O_NONBLOCK) mode, read() and wite() are
allowed to put the calling process to sleep until the corresponding operation completes.



e CMOS driver operations complete synchronously and do not depend on interrupts. However, data access
methods belonging to many drivers depend on interrupts for data collection and have to communicate
with interrupt context code via data structures such as wait queues.

Listing 5.3 contains the read() and wit e() methods belonging to the CMOS driver. You cannot directly access
user buffers from kernel space and vice versa, so to copy CMOS memory contents to user space, cnos_read()
uses the services of copy_to_user().cnos_wite() does the reverse using copy_from user (). Because
copy_to_user() and copy_from user () may fall asleep on the job, you cannot hold spinlocks while calling
them.

As you saw earlier, accessing CMOS memory is accomplished by operating on a pair of 1/0 addresses. To read
different sizes of data from an 1/0 address, the kernel provides a family of architecture-independent functions:
in[blwI|sb|sl](). Similarly, a cluster of routines, out[ b|w | | sb| sl ] (), are available for writing to 1/0
regions. port_data_i n() and port_data_out () in Listing 5.3 use i nb() and oub() for data transfer.

Listing 5.3. Read and Write

Code View:
/*
* Read froma CMOS Bank at bit-level granularity
*/
ssize_t
cmos_read(struct file *file, char *buf,
size_t count, loff_t *ppos)

{
struct cnos_dev *cnos_devp = file->private_data;
char dat al CMOS_BANK_SI ZE] ;
unsi gned char mask;

int xferred =0, i =0, |, zero_out;
int start_byte = cnps_devp->current_pointer/8;
int start_bit = cnps_devp->current_pointer%3;

i f (cnpbs_devp->current_pointer >= cnpos_devp- >si ze) {
return 0; /*EOF*/
}

/* Adjust count if it edges past the end of the CMOS bank */
i f (cnpbs_devp->current_pointer + count > cnos_devp->size) {
count = cnpbs_devp->size - cnos_devp->current_pointer;

}

/* Get the specified nunber of bits fromthe CMOS */
while (xferred < count) {
data[i] = port_data_in(start_byte, cnos_devp->bank_nunber)
>> start_bit;
xferred += (8 - start_bit);
if ((start_bit) &% (count + start_bit > 8)) {
data[i] |= (port_data_in (start_byte + 1,
cnos_devp- >bank_nunber) << (8 - start_bit));
xferred += start_bit;
}
start_byt e++;
| ++;
}

if (xferred > count) {




/* Zero out (xferred-count) bits fromthe MSB
of the last data byte */

zero_out = xferred - count;

mask = 1 << (8 - zero_out);

for (1=0; | < zero_out; |++) {
data[i-1] & ~mask; mask <<= 1;

}

xferred = count;

}

if (!xferred) return -EIQ

/* Copy the read bits to the user buffer */

if (copy_to_user(buf, (void *)data, ((xferred/8)+1)) !=0) {
return -EIQ

}

/* Increment the file pointer by the nunber of xferred bits */
cnos_devp->current _pointer += xferred;
return xferred; /* Nunber of bits read */

/*
* Wite to a CMOS bank at bit-level granularity. 'count' holds the
* nunber of bits to be witten.
*/
ssize_t
cmos_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)

{
struct cnos_dev *cnos_devp = fil e->private_data;
int xferred =0, i =0, |, end_|, start_I;
char *kbuf, tnp_kbuf;
unsi gned char tnp_data = 0, mask;
int start_byte = cnps_devp->current_pointer/8;
int start_bit = cnps_devp->current_pointer%3;

if (cnmos_devp->current_pointer >= cnos_devp->si ze) {
return 0; /* EOF */
}
/* Adjust count if it edges past the end of the CMOS bank */
i f (cnos_devp->current_pointer + count > cnos_devp->size) {
count = cnpbs_devp->size - cnos_devp->current_pointer;

}

kbuf = kmal |l oc((count/8)+1, GFP_KERNEL) ;
i f (kbuf==NULL)
return - ENOVEM

/* Get the bits fromthe user buffer */

if (copy_fromuser(kbuf, buf, (count/8)+1)) {
kfree(kbuf);
return - EFAULT;

}

/* Wite the specified nunber of bits to the CMOS bank */
while (xferred < count) {
tnp_data = port_data_in(start_byte, cnps_devp->bank_nunber);




mask = 1 << start_bit;

end_|I = 8;

if ((count-xferred) < (8 - start_bit)) {
end_| = (count - xferred) + start_bit;

}

for (I = start_bit; | <end_l; |++) {
tnp_data &= ~mask; mask <<= 1;

}

t mp_kbuf = kbuf[i];

mask = 1 << end_|;

for (I =end_I; | <8; I++) {
t np_kbuf &= ~mask;
mask <<= 1;

}

port _data_out(start_byte,
tnp_data | (tmp_kbuf << start_bit),
cnos_devp- >bank_nunber);

xferred += (end_| - start_bhit);

if ((xferred < count) && (start_bit) &&
(count + start_bit > 8)) {
tnp_data = port_data_in(start_byte+1,
cnos_devp- >bank_nunber) ;

start | = ((start_bit + count) %8);
mask = 1 << start _|;
for (1=0; | < start_I; |++) {

mask >>= 1;

tnp_data &= ~mask;
}
port _data_out((start_byte+l),
tnp_data | (kbuf[i] >> (8 - start_bit)),
cnos_devp- >bank_nunber) ;
xferred += start _|;

}

start_byt e++;
i ++;

}

if (!xferred) return -EI G

/* Push the offset pointer forward */
cnos_devp->current _pointer += xferred;
return xferred; /* Return the nunber of witten bits */

/*

* Read data from specified CMOS bank

*/

unsi gned char

port _data_i n(unsi gned char offset, int bank)

{

unsi gned char dat a;

if (unlikely(bank >= NUM CMOS_BANKS)) {
printk("Unknown CMOS Bank\n");




return 0;

} else {
out b(of fset, addrports[bank]); /* Read a byte */
data = inb(dataports[bank]);

}

return dat a;

}
/*
* Wite data to specified CMOS bank
*/
voi d
port _data_out (unsigned char of fset, unsigned char data,
i nt bank)
{

if (unlikely(bank >= NUM CMOS_BANKS)) {
print k(" Unknown CMOS Bank\n");
return;
} else {
out b(of fset, addrports[bank]); /* Qutput a byte */
out b(data, dataports[bank]);
}

return;

}

If a char driver's wit e() method returns successfully, it implies that the driver has assumed responsibility for
the data passed down to it by the application. However it does not guarantee that the data has been
successfully written to the device. If an application needs this assurance, it can invoke the f sync() system call.
The corresponding f sync() driver method ensures that application data is flushed from driver buffers and
written to the device. The CMOS driver does not need an f sync() method because, in this case, driver-writes
are synonymous with device-writes.

If a user application has data sitting on multiple buffers that it needs to send to a device, it can request multiple
driver writes, but that is inefficient for the following reasons:

1. The overhead of multiple system calls and related context switches.

2. The driver is the one who knows the device intimately, so it can probably do a more clever job of
efficiently gathering data from different buffers and dispatching it to the device.

Because of this, vectored versions of read() and wite() are supported on Linux and other UNIX flavors. The
Linux char driver infrastructure used to offer two dedicated methods to perform vector operations: r eadv() and
writev(). Starting with the 2.6.19 kernel release, these two methods have been folded into the generic Linux
Asynchronous 1/0 (AIO) layer, however. Linux AlO is a broad topic and is outside the scope of this discussion,
SO we just concentrate on the synchronous vector capabilities offered by AIO.

The prototypes of the vector driver methods are as follows:



ssize_t aio_read(struct kiocb *ioch, const struct iovec *vector,
unsi gned | ong count, loff_t offset);
ssize_t aio_wite(struct kiocb *iocb, const struct iovec *vector,
unsi gned | ong count, loff_t offset);

The first argument to ai o_read()/ai o_write() describes the AIO operation, and the second argument is an
array of i ovecs. The latter is the principal data structure used by the vector functions and contains the
addresses and lengths of buffers that hold the data. In fact, this mechanism is the user space equivalent of
scatter-gather DMA discussed in Chapter 10. Look at include/linux/uio.h for the definition of i ovecs and at
drivers/net/tun.cll] for an example implementation of vectored char driver methods.

[1] Discussed in the sidebar "TUN/TAP Driver" in Chapter 15, "Network Interface Cards."

Another data access method is mmap() , which associates device memory with user virtual memory. Applications
may call the corresponding system call, also called mmap(), and directly operate on the returned memory region
to access device-resident memory. Not many drivers implement mrap(), so we won't delve into that here.
Instead, have a look at drivers/char/mem.c for an example nmap() implementation. The section "Accessing
Memory Regions" in Chapter 19, "Drivers in User Space," illustrates how applications use mmap() . Our example
CMOS driver does not implement mmap() .

You might have noticed that port _data_i n() and port_dat a_out () envelop the bank number sanity check
within a macro called unl i kel y() . Two macros, | i kel y() and unli kel y(), inform GCC about the probability of
success of the associated conditional evaluation. This information is used by GCC while predicting branches.
Because we mark it unlikely that the bank sanity check will fail, GCC generates intelligent code that gels the

el se{} clause sequentially with the code flow. Branching is done for the i f {} clause. The reverse happens if
you use | i kel y() rather than unli kel y().

Seek

The kernel uses an internal pointer to keep track of the current file access position. Applications use the

| seek() system call to request repositioning of this internal file pointer. Using the services of | seek(), you can
reset the file pointer to any offset within the file. The char driver counterpart of | seek() is the | | seek()
method. cnos_| | seek() implements this method in the CMOS driver.

As we saw previously, the internal file pointer for the CMOS moves bit-wise rather than byte-wise. If a byte of
data is read from the CMOS driver, the file pointer has to be moved by 8, so applications have to seek
accordingly. cnos_| | seek() also implements end-of-file semantics depending on the size of the CMOS bank.

To understand the semantics of | | seek() , let's start by looking at the commands supported by the | seek()
system call:

1. SEEK SET, which sets the file pointer to a supplied fixed offset.

2. SEEK_CUR, which calculates the offset relative to the current location.

3. SEEK_END, which calculates the offset relative to the end-of-file. This command can maneuver the file
pointer beyond the end of the file, but does not change the file size. Reads beyond the end-of-file marker
return naught if no data is explicitly written. This technique is often used to create big files. The CMOS
driver does not support SEEK_END.



Look at cnos_| | seek() in Listing 5.4 and co-relate with the preceding definitions.

Listing 5.4. Seek

Code View:
/*
* Seek to a bit offset within a CMOS bank
*/
static loff_t
cmos_| | seek(struct file *file, loff_t offset,
int orig)
{
struct cnos_dev *cnos_devp = fil e->private_data;
switch (orig) {
case 0: /* SEEK SET */
if (offset >= cnos_devp->size) {
return - El NVAL,
}
cnos_devp->current _pointer = offset; /* Bit Ofset */
br eak;
case 1: /* SEEK CURR */
if ((crmos_devp->current_pointer + offset) >=
cnos_devp- >si ze) {
return -EI NVAL;
}
cnos_devp->current _pointer = offset; /* Bit Ofset */
br eak;
case 2: /* SEEK END - Not supported */
return - ElI NVAL;
defaul t:
return - ElI NVAL;
}
return(cnos_devp->current_pointer);
}
Control

Another common char driver method is called 1/0 Control (or ioctl). This routine is used to receive and
implement application commands that request device-specific actions. Because CMOS memory is used by the
BIOS to store crucial information such as the boot device order, it's usually protected via cyclic redundancy
check (CRC) algorithms. To detect data corruption, the CMOS driver supports two ioctl commands:

1. Adjust checksum, which is used to recalculate the CRC after the CMOS contents have been modified. The
calculated checksum is stored at a predetermined offset in CMOS bank 1.



2. Verify checksum, which is used to check whether the CMOS contents are healthy. This is done by
comparing the CRC of the current contents with the value previously stored.

Applications send these commands down to the driver via the i oct| () system call when they want to request it
to perform checksum operations. Look at cnbs_i oct| () in Listing 5.5 for the implementation of the CMOS
driver's i oct| method. adj ust _cnos_crc(int bank, unsigned short seed) implements the standard CRC
algorithm and is not shown in the listing.

Listing 5.5. 1/0 Control

Code View:
#def i ne CMOS_ADJUST_CHECKSUM 1
#def i ne CMOS_VERI FY_CHECKSUM 2

#def i ne CMOS_BANK1_CRC_OFFSET Ox1E

/*

* |octls to adjust and verify CRCl6s.
*/

static int

cnos_ioctl (struct inode *inode, struct file *file,
unsigned int cnd, unsigned |ong arg)
{
unsi gned short crc = 0;
unsi gned char buf;

switch (cmd) {
case CMOS_ADJUST CHECKSUM
/* Cal cul ate the CRC of bankO using a seed of 0 */
crc = adjust_cnos_crc(0, 0);

/* Seed bankl with CRC of bank0 */
crc = adjust_cnmos_crc(1, crc);

/* Store cal cul ated CRC */
port _dat a_out (CMOS_BANK1_CRC_OFFSET,
(unsigned char)(crc & OxFF), 1);
port _data_out (( CMOS_BANK1_CRC OFFSET + 1),
(unsigned char) (crc >> 8), 1);
br eak;

case CMOS_VERI FY_CHECKSUM
/* Cal cul ate the CRC of bankO using a seed of 0 */
crc = adjust_cnos_crc(0, 0);

/* Seed bankl with CRC of bank0 */
crc = adjust_cnos_crc(1, crc);

/* Conpare the calculated CRC with the stored CRC */
buf = port_data_i n(CMOS_BANK1_CRC OFFSET, 1);
if (buf !'= (unsigned char) (crc & OxFF)) return -ElI NVAL;

buf = port_data_i n((CMOS_BANK1 CRC OFFSET+1), 1);

if (buf !'= (unsigned char)(crc >> 8)) return -EI NVAL;
br eak;

defaul t:




}

}

return -EI G

return O;




Sensing Data Availability

Many user applications are sophisticated and are not satisfied with the vintage open() /read() /wite()/cl ose()
calls. They desire synchronous or asynchronous notifications that alert them when new data is available from
the device or when the driver is ready to accept new data. In this section, we examine two char driver methods
that sense data availability: pol | () and fasync() . The former is synchronous, whereas the latter is
asynchronous. Because these mechanisms are relatively advanced, let's first understand how applications use
these features before finding out how the underlying driver implements them. Sensing data availability is not
relevant for the simple CMOS memory device discussed previously, so let's take a few usage scenarios from a
popular user space application: the X Windows server.

Poll

Consider the following code snippet from the X Windows source tree (downloadable from www.xfree86.org) that
handles mice events:

xc/ prograns/ Xserver/ hw xfree86/i nput/ nouse/ nouse. c:
case PROT_THI NKI NG /* Thi nki ngMouse */
/* This mouse may send a PnP ID string, ignore it. */
usl eep(200000); xf86Fl ushl nput (pl nfo->fd);
/* Send the conmand to initialize the beast. */
for (s = "E5E5"; *s; ++s) {
xf 86WiteSerial (plnfo->fd, s, 1);
i f ((xf86WitForlnput(plnfo->fd, 1000000) <= 0))
br eak;
xf 86ReadSeri al (pl nfo->fd, &c, 1);
if (c !'=*s) break;
}

br eak;

Essentially, the code sends an initialization command to the mouse, polls until it senses input data, and reads
the response from the device. If you peel the envelope off Xf 86\Wai t For | nput () used previously, you will find a
call to the sel ect () system call:

Code View:

xc/ prograns/ Xserver/ hw xfree86/ os- support/shared/ posi x_tty.c:
i nt

xf 86Wai t For I nput (int fd, int tineout)

{

fd _set readfds;
struct tineval to;
int r;

FD_ZERQ( &r eadf ds) ;

if (fd >=0) {
FD_SET(fd, &readfds);

}

ti meout / 1000000;
ti meout % 1000000;

to.tv_sec
to.tv_usec

if (fd >= 0) {



SYSCALL (r
} else {
SYSCALL (r

}

i f (xf86Verbose >= 9)
ErrorF ("select returned %@\n", r);

sel ect (FD_SETSI ZE, &readfds, NULL, NULL, &to0));

sel ect (FD_SETSI ZE, NULL, NULL, NULL, &t0));

return (r);

}

You may supply a bunch of file descriptors to sel ect () and ask it to keep an eye on them until there is a change
in the associated data state. You may also request a timeout to override data availability. If you ask for a
timeout of NULL, sel ect () blocks forever. Refer to the man or info pages of sel ect () for detailed
documentation. The call to sel ect () in the preceding snippet induces the X server to poll for data from a
connected mouse within a timeout.

Linux supports another system call, pol | (), which has semantics similar to sel ect (). The 2.6 kernel
supports a new non-POSIX system call named epol | () that is a more scalable superset of pol | (). All
these system calls rely on the same underlying char driver method, pol | ().

Most 1/0 system calls are POSIX-compliant and are not Linux-specific (programs such as X Windows after all,
run on many UNIX flavors, not just on Linux), but the internal driver methods are operating system-specific. On
Linux, the pol | () driver method is the pillar under the sel ect () system call. In the previous X server scenario,
the mouse driver's pol | () method looks like this:

static DECLARE_WAI T_QUEUE_HEAD( nouse_wait); /* Wait Queue */

static unsigned int
mouse_pol | (struct file *file, poll_table *wait)
{

poll _wait(file, &muse_wait, wait);

spi n_l ock_irg(&muse_I ock);

/* See if data has arrived fromthe device or

if the device is ready to accept nore data */
[* ..o %
spi n_unl ock_i rq( &muse_| ock) ;

/* Availability of data is detected frominterrupt context */
if (data_is_available()) return(POLLIN | POLLRDNORM ;

/* Data can be witten. Not relevant for mce */
if (data_can_be_witten()) return(POLLOUT | POLLWRNORM ;

return O;



When Xf 86Wai t For | nput () invokes sel ect (), the generic kernel poll implementation (defined in fs/select.c)
calls mouse_pol | (). nouse_pol | () takes two arguments, the usual file pointer (struct file *) and a pointer
to a kernel data structure called the pol | _t abl e. The pol | _t abl e is a table of wait queues owned by device
drivers that are being polled for data.

nmouse_pol | () uses the library function, pol | _wai t (), to add a wait queue (mouse_wai t ) to the kernel

pol | _tabl e and go to sleep. As you saw in Chapter 3, "Kernel Facilities," device drivers usually own several
wait queues that block until they detect a change in a data condition. This condition can be the arrival of new
data from the device, willingness of the driver to pass new data to the application, or the readiness of the
device (or the driver) to accept new data. Such conditions are usually (but not always) detected by the driver's
interrupt handler. When the mouse driver's interrupt handler senses mouse movement, it calls
wake_up_interruptibl e( &muse_wai t) to wake up the sleeping nouse_pol | ().

If there is no change in the data condition, the pol | () method returns 0. If the driver is ready to send at least
one byte of data to the application, it returns POLLI N| POLLRDNORM If the driver is ready to accept at least a byte
of data from the application, it returns POLLOUT| POLLWRNORM[2] Thus, if there is no mouse movement,

nouse_pol | () returns 0, and the calling thread is put to sleep. The kernel invokes nmouse_pol | () again when
the mouse interrupt handler senses device data and wakes up the nouse_wai t queue. This time around,
nmouse_pol | () returns POLLI N POLLRDNORM so the sel ect () call and hence Xf 86\Wi t For | nput () return
positive values. The X server's mouse handler (xc/programs/Xserver/hw/xfree86/input/mouse/mouse.c) goes
on to read data from the mouse.

[2]1 The full list of return codes is defined in include/asm-generic/poll.h. Some of them are used only by the networking stack.

User applications that poll a driver are usually more interested in driver characteristics than device
characteristics. For example, depending on the health of its buffers, a driver might be ready to accept
new data from the application before the device itself is.

Fasync

Some applications, for performance reasons, desire asynchronous notifications from the device driver. Assume
that an application on a Linux pacemaker programmer device is busy performing complex computations but
wants to be notified as soon as data arrives from an implanted pacemaker via a telemetry interface. The

sel ect ()/ pol I () mechanism is not of use in this case because it blocks the computations. What the application
needs is an asynchronous event report. If the telemetry driver can asynchronously dispatch a signal (usually

SI A O) as soon as it detects data from the pacemaker, the application can catch it using a signal handler and
accordingly steer the code flow.

For a real-world example of asynchronous notification, let's revert to a region of the X server that requests
alerts when data is detected from input devices. Take a look at this snippet from the X server sources:

Code View:
xc/ prograns/ Xserver/ hw' xfree86/ os- support/shared/sigi o. c:
int xf86lnstallSIA OHandl er(int fd, void (*f)(int, void *),
voi d *cl osure)
{
struct sigaction sa;
struct sigaction osa;



if (fentl(fd, F_SETOMN, getpid()) == -1) {
bl ocked = xf86Bl ockSI A () ;

/* O ASYNC is defined as SI G O el sewhere by the X server */

if (fentl(fd, F_SETFL, fcntl (fd, F_GETFL) | O ASYNC) == -1) {
xf 86Unbl ockSI G (bl ocked); return O;

}

si genpt yset (&sa. sa_mask) ;

si gaddset (&sa. sa_mask, SIG O;

sa.sa_flags = O;

sa. sa_handl er = xf86SIG O

sigaction(SIGA O, &sa, &osa);

[* .00 %

return O;

}

static void
xf86SI A Q(i nt sig)
{
/* ldentify the device that triggered generation of this
SIA O and handl e the data arriving fromit */
[* ... %]

As you can decipher from the above snippet, the X server does the following:

e Callsfcntl (F_SETOM) . The fcntl () system call is used to manipulate file descriptor behavior. F_SETOMN
sets the ownership of the descriptor to the calling process. This is required since the kernel needs to know
where to send the asynchronous signal. This step is transparent to the device driver.

e Invokes fcntl (F_SETFL) . F_SETFL requests the driver to deliver SI G Oto the application whenever there
is data to be read, or if the driver is ready to receive more application data. The invocation of
fentl (F_SETFL) results in the invocation of the f async() driver method. It's this method's responsibility
to add or remove entries from the list of processes that are to be delivered SI G O. To this end, f async()
utilizes the services of a kernel library function called f async_hel per ().

¢ Implements the SI G Osignal handler, xf 86SI G (), as per its code architecture and installs it using the
si gaction() system call. When the underlying input device driver detects a change in data status, it
dispatches Sl G O to registered requesters and this triggers execution of xf 86SI G () .[3] Char drivers call
kill _fasync() to send Sl G Oto registered processes. To notify a read event, POLLI N is passed as the
argument to ki | | _fasync() . To notify a write event, the argument is POLLOUT.

[31 If your signal handler services asynchronous events from multiple devices, you will need additional mechanisms, such as a
sel ect () call inside the handler, to figure out the identity of the device responsible for the event.

To see how the driver-side of the asynchronous notification chain is implemented, let's look at a fictitious



fasync() method belonging to the driver of an input device:

Code View:

/* This is invoked by the kernel when the X server opens this

* jnput device and issues fcntl (F_SETFL) on the associated file

* descriptor. fasync_hel per() ensures that if the driver issues a
* kill_fasync(), a SIGOis dispatched to the owning application.

*/

static int

i nput devi ce_fasync(int fd, struct file *filp, int on)

{

return fasync_hel per(fd, filp, on, & nputdevice_async_queue);

}
/* Interrupt Handler */

irgreturn_t

i nputdevice_interrupt(int irq, void *dev_id)

{

[* .00 %

/* Dispatch a SIA O using kill_fasync() when input data is
detected. Qutput data is not relevant since this is a read-only
device */

wake_up_interrupti bl e(& nputdevice_wait);

kill _fasync(& nputdevice_async_queue, SIA O POLL_IN)

[* .0 %]

return | RQ HANDLED,

}

To see how SI A Odelivery can be complex, consider the case of a tty driver (discussed in Chapter 6, "Serial
Drivers"™). Interested applications get notified under different scenarios:

o If the underlying driver is not ready to accept application data, it puts the calling process to sleep. When
the driver interrupt handler subsequently decides that the device can accept more data, it wakes the
application and invokes ki | | _fasync( POLLOUT) .

¢ If a newline character is received, the tty layer calls ki | | _fasync(PCLLI N) .

¢ When the driver wakes up a sleeping reader thread after detecting that sufficient data bytes beyond a
threshold have arrived from a device, it sends that information to stakeholder processes by invoking
kill _fasync(POLLIN).



Talking to the Parallel Port

The parallel port is a ubiquitous 25-pin interface popularly found on PC-compatible systems. The capability of a
parallel port (whether it's unidirectional, bidirectional, supports DMA, and so on) depends on the underlying
chipset. Look at Figure 4.1 in Chapter 4 to find out how the PC architecture supports parallel ports.

The drivers/parport/ directory contains code (called parport) that implements IEEE 1284 parallel port
communication. Several devices that connect to the parallel port such as printers and scanners use parport's
services. Parport has an architecture-independent module called parport.ko and an architecture-dependent one
(parport_pc.ko for the PC architecture) that provide programming interfaces to drivers of devices that interface
via the parallel port.

Let's take the example of the parallel printer driver, drivers/char/Ip.c. These are the high-level steps needed to
print a file:

1. The printer driver creates char device nodes /dev/Ip0 to /dev/IpN, one per connected printer.

2. The Common UNIX Printing System (CUPS) is the framework that provides print capabilities on Linux. The
CUPS configuration file (/etc/printers.conf on some distributions) maps printers with their char device
nodes (/dev/IpX).

3. CUPS utilities consult this file and stream data to the corresponding device node. So, if you have a printer
connected to the first parallel port on your system and you issue the command, lpr myfile, it's streamed
via /dev/Ip0 to the printer'swite() method, | p_wite(), defined in drivers/char/Ip.c.

4. |Ip_wite() uses the services of parport to send the data to the printer.

Apple Inc. has acquired ownership of CUPS software. The code continues to be licensed under GPLv2.

A char driver called ppdev(drivers/char/ppdev.c) exports the /dev/parportX device nodes that let user
applications directly communicate with the parallel port. (We talk more about ppdev in Chapter 19.)

Device Example: Parallel Port LED Board

To learn how to use the services offered by parport, let's write a simple driver. Consider a board that has eight
light-emitting diodes (LEDs) interfaced to a standard 25-pin parallel port connector. Because the 8-bit parallel
port data register on the PC is directly mapped to pins 2 to 9 of the parallel port connector, those pins are wired
to the LEDs on the board. Writing to the parallel port data register controls the voltage levels of these pins and
turns the LEDs on or off. Listing 5.6 implements a char driver that communicates with this board over the
system parallel port. Embedded comments explain the parport service routines that Listing 5.6 uses.

Listing 5.6. Driver for the Parallel LED Board (led.c)

Code View:
#i nclude <linux/fs.h>
#i ncl ude <l i nux/cdev. h>



#i ncl ude <l i nux/ parport.h>
#i ncl ude <asnf uaccess. h>

#i ncl ude <l inux/ pl atform device. h>

#def i ne DEVI CE_NAME "l ed"

static dev_t dev_nunber;
static struct class *led_cl ass;

struct cdev | ed_cdev;
struct pardevice *pdev;

/* LED open */
int
| ed_open(struct

{
}

i node *inode,

return O;

/* Wite to the LED */

ssize_t

led wite(struct file *file,
size_t count,

{

char kbuf;

i f (copy_fromuser(&buf, buf,

/* Claimthe port */
par port _cl ai m or _bl ock( pdev);

/* Wite to the device */
parport_write_data(pdev->port,

/* Rel ease the port */
par port _rel ease(pdev);

return count;

}
/* Rel ease the device */
int
| ed_rel ease(struct inode *inode,
{
return O;
}

/* File Operations */

struct

/* Allotted device nunber */

/* Class to which this device
bel ongs */

/* Associ ated cdev */

/* Parallel port device */

file *file)

const char *buf,
lof f _t *ppos)

1)) return - EFAULT;

kbuf);

struct file *file)

static struct file_operations led fops = {

.owner = TH S_MODULE,
.open = | ed_open,
.wite = led wite,
.rel ease = | ed_rel ease,

b

static int
| ed_preenpt (voi d *handl e)

{
}

return 1;




/* Parport attach nmethod */
static void
| ed_attach(struct parport *port)
{
/* Register the parallel LED device with parport */
pdev = parport_register_device(port, DEVI CE_NANME,
| ed_preenpt, NULL,
NULL, 0, NULL);
if (pdev == NULL) printk("Bad register\n");
}

/* Parport detach nethod */
static void

| ed_detach(struct parport *port)
{

}

/* Do nothing */

/* Parport driver operations */
static struct parport_driver led_driver = {

. nanme = "led",
.attach = led_attach,
.detach = | ed_det ach,
b
[* Driver Initialization */
int _init

led_init(void)
{
/* Request dynamic allocation of a device najor nunber */
if (alloc_chrdev_region(&ev_nunber, 0, 1, DEVI CE_NAME)
<0) {
print k(KERN_DEBUG "Can't register device\n");
return -1;

}

/* Create the led class */
| ed_class = class_create(TH S_MODULE, DEVI CE_NAME) ;
if (IS ERR(led_class)) printk("Bad class create\n");

/* Connect the file operations with the cdev */
cdev_init (& ed_cdev, & ed_fops);

| ed_cdev. owner = TH S_MODULE;

/* Connect the major/mnor nunber to the cdev */
if (cdev_add(& ed_cdev, dev_number, 1)) {
printk("Bad cdev add\n");
return 1;

}

cl ass_device_create(led_class, NULL, dev_nunber,
NULL, DEVI CE_NAME);

/* Register this driver with parport */

if (parport_register_driver(& ed_driver)) {
print k(KERN_ERR "Bad Parport Register\n");
return -EIQ

}




printk("LED Driver Initialized.\n");
return O;

}

/* Driver Exit */
void __exit
| ed_cl eanup(voi d)
{
unregi ster_chrdev_regi on( MAJOR(dev_nunber), 1);
cl ass_devi ce_destroy(l ed_cl ass, MKDEV(MAJOR(dev_nunber), 0));
cl ass_destroy(l ed_cl ass);
return;

}

modul e_init(led_init);
nmodul e_exi t (1 ed_cl eanup) ;

MODULE_LI CENSE( " GPL") ;

I ed_init() is similar to cnos_i nit () developed in Listing 5.1, but for a couple of things:

1. As you saw in Chapter 4, the new device model distinguishes between drivers and devices. | ed_i nit ()
registers the LED driver with parport via a call to parport _regi ster_dri ver().When the kernel finds the
LED board during | ed_att ach(), it registers the device by invoking par port _regi ster_devi ce().

2. led_init() creates the device node /dev/led, which you can use to control the state of individual LEDs.

Compile and insert the driver module into the kernel:

bash> nake —-C /path/to/ kerneltree/ M$PWD nodul es
bash> insnod ./| ed. ko
LED Driver Initialized

To selectively drive some parallel port pins and glow the corresponding LEDs, echo the appropriate value to
/dev/led:

bash> echo 1 > /dev/I| ed

Because ASCII for 1 is 31 (or 00110001), the first, fifth, and sixth LEDs should turn on.

The preceding command triggers invocation of | ed_wri t e() . This driver method first copies user memory (the
value 31 in this case) to kernel buffers via copy_from user (). It then claims the parallel port, writes data, and
releases the port, all using parport interfaces.

Sysfs is a better place than /dev to control device state, so it's a good idea to entrust LED control to sysfs files.
Listing 5.7 contains the driver implementation that achieves this. The sysfs manipulation code in the listing can



serve as a template to achieve device control from other drivers, too.

Listing 5.7. Using Sysfs to Control the Parallel LED Board

Code View:

#i ncl ude <linux/fs. h>

#i ncl ude <l i nux/cdev. h>

#i ncl ude <l i nux/ parport.h>
#i ncl ude <asnf uaccess. h>
#i ncl ude <l inux/pci.h>

static dev_t dev_nunber; /* Allotted Device Nunber */
static struct class *led _class; /* Cass Device Mdel */
struct cdev | ed_cdev; /* Character dev struct */
struct pardevice *pdev; /* Parallel Port device */
struct kobject kobj; /* Sysfs directory object */

/* Sysfs attribute of the leds */
struct led_attr {
struct attribute attr;
ssize_t (*show)(char *);
ssize_t (*store)(const char *, size_t count);

b

#defi ne gl ow_show | ed( nunber)

static ssize_t

gl ow_| ed_##nunber (const char *buffer, size_t count)

{
unsi gned char buf;
int val ue;

sscanf (buffer, "%", &val ue);

par port_cl ai m or _bl ock( pdev);
buf = parport_read_dat a(pdev->port);
if (value) {
parport_write_data(pdev->port, buf | (1l<<nunber));
} else {
parport_write_data(pdev->port, buf & ~(l<<nunber));
}
par port _rel ease(pdev);
return count;

}

static ssize_t
show_| ed_##nunber (char *buffer)

{

unsi gned char buf;
par port _cl ai m or_bl ock( pdev);

buf = parport_read_dat a(pdev->port);
par port_rel ease(pdev);

if (buf & (1 << nunber)) {

return sprintf(buffer, "ON\N");
} else {

return sprintf(buffer, "OFF\n");

e e o e e e e e e e e e e e e e e e e e e e e e e e — — — — —




}
}

— - -

static struct led_attr |ed##nunber = \
__ATTR(I ed##nunber, 0644, show_| ed_##nunber, gl ow_| ed_##nunber);

gl ow_show_| ed(0); gl ow show | ed(1); gl ow show | ed(2);
gl ow_show_| ed(3); gl ow show | ed(4); gl ow show | ed(5);
gl ow_show_| ed(6); gl ow show | ed(7);

#def i ne DEVI CE_NAME "| ed"

static int
| ed_preenpt (voi d *handl e)

{
}

return 1;

/* Parport attach nethod */
static void
| ed_attach(struct parport *port)

{
pdev = parport_register_device(port, DEVI CE_NANME,
| ed_preenpt, NULL, NULL, O,
NULL) ;
if (pdev == NULL) printk("Bad register\n");
}

/* Parent sysfs show() nmethod. Calls the show() nethod
corresponding to the individual sysfs file */

static ssize_t

| _show(struct kobject *kobj, struct attribute *a, char *buf)

{
int ret;
struct led_attr *lattr = container_of(a, struct led_attr,attr);

ret = lattr->show ? lattr->show(buf) : -EIQ
return ret;

}

/* Sysfs store() nmethod. Calls the store() nethod

corresponding to the individual sysfs file */
static ssize_t
| _store(struct kobject *kobj, struct attribute *a,

const char *buf, size_t count)

{

int ret;

struct led_attr *lattr = container_of(a, struct led_attr, attr);

ret = lattr->store ? lattr->store(buf, count) : -EIQ
return ret;

}

/* Sysfs operations structure */
static struct sysfs_ops sysfs ops = {
.show = 1_show,
.store = | _store,

}s




/* Attributes of the /sys/class/pardevice/led/ control/ kobject.
Each file in this directory corresponds to one LED. Control
each LED by witing or reading the associated sysfs file */

static struct attribute *led_attrs[] = {

& ed0. attr,
& edl. attr,
& ed2. attr,
& ed3. attr,
& ed4. attr,
& ed5. attr,
& ed6. attr,
& ed7.attr,
NULL

b

/* This describes the kobject. The kobject has 8 files, one
corresponding to each LED. This representation is called the
kt ype of the kobject */

static struct kobj _type ktype_led = {

.sysfs_ops = &sysfs_ops,
.default_attrs = led_attrs,

b

/* Parport nethods. We don't have a detach nethod */
static struct parport_driver led_driver = {

.hane = "led",

.attach = led_attach,

b

/* Driver Initialization */
int __init

I ed_init(void)

{

struct class_device *c_d;

/* Create the pardevice class - /sys/class/pardevice */
| ed_class = class_create(TH S_MODULE, "pardevice");
if (IS ERR(led_class)) printk("Bad class create\n");

/* Create the led class device - /sys/class/pardevice/led/ */
c_d = class_device_create(l ed_class, NULL, dev_nunber,
NULL, DEVI CE_NAME);

/* Register this driver with parport */

if (parport_register_driver(& ed_driver)) {
print k(KERN_ERR "Bad Parport Register\n");
return -EIQ

}

/* Instantiate a kobject to control each LED
on the board */

/* Parent is /sys/class/pardevice/led/ */
kobj . parent = &c_d->kobj ;
/* The sysfs file corresponding to kobj is

/ sys/ cl ass/ pardevice/l ed/control/ */
strlcpy(kobj.nane, "control", KOBJ_NAME_LEN);

/* Description of the kobject. Specifies the list of attribute




files in /sys/class/pardevicel/led/ control/ */
kobj . ktype = &ktype_lI ed;

/* Register the kobject */
kobj ect _regi st er (&obj);

printk("LED Driver Initialized.\n");
return O;

}

/* Driver Exit */
voi d
| ed_cl eanup(voi d)

{

/* Unregi ster kobject corresponding to
/ sys/ cl ass/ par devi ce/ | ed/ control */
kobj ect _unr egi st er (&kobj);

/* Destroy class device corresponding to
/ sys/ cl ass/ pardevi ce/l ed/ */
cl ass_devi ce_destroy(l ed_cl ass, MKDEV(MAJOR(dev_nunber), 0));

/* Destroy /sys/class/pardevice */
cl ass_destroy(l ed_cl ass);

return;

}

module_init(led_init);
nmodul e_exi t (1 ed_cl eanup) ;

MODULE_LI CENSE(" GPL") ;

The macro definition of gl ow_show | ed() in Listing 5.7 uses a technique popular in kernel source files to
compactly define several similar functions. The definition produces read() and wite() methods (called show )
and st or e() in sysfs terminology) attached to eight /sys files, one per LED on the board. Thus,

gl ow_show_| ed(0) attaches gl ow_| ed_0() and show_| ed_0() to the /sys file corresponding to the first LED.
These functions are respectively responsible for glowing/extinguishing the first LED and reading its status. ##
glues a value to a string, so gl ow_| ed_##nunber translates to gl ow_| ed_0() when the compiler processes the
statement, gl ow_show_| ed(0).

This sysfs-aware version of the driver uses a kobject to represent a "control" abstraction, which emulates a
software knob to control the LEDs. Each kobject is represented by a directory name in sysfs, so
kobj ect _regi ster() in Listing 5.7 results in the creation of the /sys/class/pardevice/led/control/ directory.

A ktype describes a kobject. The "control" kobject is described via the kt ype_| ed structure, which contains a
pointer to the attribute array, | ed_attrs[]. This array contains the addresses of the device attributes of each
LED. The attributes of each LED are tied together by the statement:

static struct led attr |ed##nunber =
__ATTR(| ed##nunber, 0644, show_| ed_##nunber, gl ow_| ed_##nunber);



This results in instantiating the control file for each LED, /sys/class/pardevice/led/control/ledX, where X is the
LED number. To change the state of ledX, echo a 1 (or a 0) to the corresponding control file. To glow the first
LED on the board, do this:

bash> echo 1 > /sys/cl ass/ pardevice/l ed/control /| ed0

During module exit, the driver unregisters the kobjects and classes using kobj ect _unregi ster (),

cl ass_devi ce_destroy(), and cl ass_destroy() .

Listing 7.2 in Chapter 7, "Input Drivers," uses another route to create files in sysfs.

Writing a char driver is no longer as simple as it used to be in the days of the 2.4 kernel. To develop the simple
LED driver above, we used half a dozen abstractions: cdev, sysfs, kobjects, classes, class device, and parport.

The abstractions, however, bring several advantages to the table such as bug-free building blocks, code reuse,
and elegant design.



RTC Subsystem

RTC support in the kernel is architected into two layers: a hardware-independent top-layer char driver that
implements the kernel RTC API, and a hardware-dependent bottom-layer driver that communicates with the
underlying bus. The RTC API, specified in Documentation/rtc.txt, is a set of standard ioctls that conforming
applications such as hwclock leverage by operating on /dev/rtc. The API also specifies attributes in sysfs
(/sys/class/rtc/) and procfs (/proc/driver/rtc). The RTC APl guarantees that user space tools are independent of
the underlying platform and the RTC chip. The bottom-layer RTC driver is bus-specific. The embedded device
discussed in the section "Device Example: Real Time Clock" in Chapter 8, "The Inter-Integrated Circuit
Protocol," has an RTC chip connected to the 12C bus, which is driven by an 12C client driver.

The kernel has a dedicated RTC subsystem that provides the top-layer char driver and a core infrastructure that
bottom-layer RTC drivers can use to tie in with the top layer. The main components of this infrastructure are the
rtc_cl ass_ops structure and the registration functions, rt c_devi ce_[regi ster| unregi ster] (). Bottom-layer
RTC drivers scattered under different bus-specific directories are being unified with this subsystem under
drivers/rtc/.

The RTC subsystem allows the possibility that a system can have more than one RTC. It does this by exporting
multiple interfaces, /dev/rtcN and /sys/class/rtc/rtcN, where N is the number of RTCs on your system. Some
embedded systems, for example, have two RTCs: one built in to the microcontroller to support sophisticated
operations such as periodic interrupt generation, and another no-frills low-power battery-backed external RTC
for timekeeping. Because RTC-aware applications operate over /dev/rtc, set up a symbolic link so that one of
the created /dev/rtcX nodes can be accessed as /dev/rtc.

To enable the RTC subsystem, turn on CONFI G_RTC_CLASS during kernel configuration.

The Legacy PC RTC Driver

On PC systems, you have the option of bypassing the RTC subsystem by using the legacy RTC
driver, drivers/char/rtc.c. This driver provides top and bottom layers for the RTC on PC-compatible
systems and exports /dev/rtc and /proc/driver/rtc to user applications. To enable this driver, turn
on CONFI G_RTC during kernel configuration.




Pseudo Char Drivers

Several commonly used kernel facilities are not connected with any physical hardware, and these are elegantly
implemented as char devices. The null sink, the perpetual zero source, and the kernel random number
generator are treated as virtual devices and are accessed using pseudo char device drivers.

The /dev/null char device sinks data that you don't want to display on your screen. So if you need to check out
source files from a Concurrent Versioning System (CVS) repository without spewing filenames all over the
screen, do this:

bash> cvs co kernel > /dev/null

This redirects command output to the write entry point belonging to the /dev/null driver. The driver's r ead()
and wri t e() methods simply return success ignoring the contents of the input and output buffers, respectively.

If you want to fill an image file with zeros, call upon /dev/zero to come to your service:

bash> dd if=/dev/zero of=file.ing bs=1024 count=1024

This sources a stream of zeros from the read() method belonging to the /dev/zero driver. The driver has no
write() method.

The kernel has a built-in random number generator. For the benefit of kernel users who desire to use random
sequences, the random number generator exports APIs such as get _random byt es() . For user mode programs,
it exports two char interfaces: /dev/random and /dev/urandom. The quality of randomness is higher for reads
from /dev/random compared to that from /dev/urandom. When a user program reads from /dev/random, it gets
strong (or true) random numbers, but reads from /dev/urandom yield pseudo random numbers. The
/dev/random driver does not use formulae to generate strong random numbers. Instead, it gathers
"environmental noise" (interval between interrupts, key clicks, and so on) for maintaining a reservoir of disorder
(called an entropy pool) that seeds the random stream. To see the kernel's input subsystem (discussed in
Chapter 7) contributing to the entropy pool when it detects a keyboard press or mouse movement, look at

i nput _event () defined in drivers/input/input.c:

voi d
i nput _event (struct input_dev *dev, unsigned int type,
unsi gned int code, int value)

{

[* ...

add_i nput _randommess(type, code, value); /* Contribute to entropy

pool */
[* .0 0%

To see how the core interrupt handling layer contributes inter-interrupt periods to the entropy pool, look at
handl e_I RQ event () defined in kernel/irg/handle.c:

irgreturn_t handl e_I RQ event (unsigned int irq,
struct irqgaction *action)
{
[* .0 %
if (status & | RQF_SAMPLE_RANDOM



add_i nterrupt_randomess(irq); /* Contribute to entropy pool */
[* ...

The generation of strongly random numbers depends on the size of the entropy pool:

bash> od —x /dev/random

0000000 7331 9028 7c89 4791 7f64 3deb 86b3 7564
0000020 ebb9 e806 22l1a b8f9 af 12 cb30 9ale cc28
0000040 68d8 Obbf 68a4 0898 528e 1557 d8b3 57ec
0000060 b01d 8714 blel 19b9 0a86 9f 60 646¢ c269

The output stops after a few lines, signaling that the entropy pool is exhausted. To replenish the entropy pool
and restart the random stream, jab the keyboard several times after switching to an unused terminal or push
the mouse around the screen.

A dump of /dev/ urandom, however, produces a continuous pseudo random stream that never stops.

/dev/mem and /dev/ kmem are classic pseudo char devices that are tools that let you peek inside system
memory. These char nodes export raw interfaces connected to physical memory and kernel virtual memory,
respectively. To manipulate system memory, you may nmap() these nodes and operate on the returned regions.
As an exercise, change the hostname of your system by accessing /dev/mem.

All the char devices discussed in this section (null, zero, random, urandom, mem, and kmem) have different
minor numbers but the same statically assigned major number, 1. Look at drivers/char/mem.c and
drivers/char/random.c for their implementation. Two other pseudo drivers belong to the same major number
family: /dev/full, which emulates an always full device; and /dev/port, which peeks at system 1/0 ports. We use
the latter in Chapter 19.



Misc Drivers

Misc (or miscellaneous) drivers are simple char drivers that share certain common characteristics. The kernel
abstracts these commonalities into an APl (implemented in drivers/char/misc.c), and this simplifies the way
these drivers are initialized. All misc devices are assigned a major number of 10, but each can choose a single
minor number. So, if a char driver needs to drive multiple devices as in the CMOS example discussed earlier, it's
probably not a candidate for being a misc driver.

Consider the sequence of initialization steps that a char driver performs:

¢ Allocates major/minor numbers via al | oc_chrdev_regi on() and friends
e Creates /dev and /sys nodes using cl ass_devi ce_create()

e Registers itself as a char driver using cdev_i nit () and cdev_add()

A misc driver accomplishes all this with a single call to m sc_regi ster():

static struct niscdevice nmydrv_dev = {
MYDRV_M NOR,

"mydrv",

&nydrv_fops

i

m sc_regi ster (&mydrv_dev);

In the preceding example, MYDRV_M NCR is the minor number that you want to statically assign to your misc
driver. You may also request a minor number to be dynamically assigned by specifying M SC_DYNAM C_M NOR
rather than MYDRV_M NOR in the nydr v_dev structure.

Each misc driver automatically appears under /sys/class/misc/ without explicit effort from the driver writer.
Because misc drivers are char drivers, the earlier discussion on char driver entry points hold for misc drivers,
too. Let's now look at an example misc driver.

Device Example: Watchdog Timer

A watchdog's function is to return an unresponsive system to operational state. It does this by periodically
checking the system's pulse and issuing a resetl?] if it can't detect any. Application software is responsible for
registering this pulse (or "heartbeat™) by periodically strobing (or "petting") the watchdog using the services of
a watchdog device driver. Most embedded controllers support internal watchdog modules. External watchdog
chips are also available. An example is the Netwinder W83977AF chip.

[4] A watchdog may issue audible beeps rather than a system reset. An example scenario is when a timeout occurs due to a power supply
problem, assuming that the watchdog circuit is backed up using a battery or a super capacitor.

Linux watchdog drivers are implemented as misc drivers and live inside drivers/char/watchdog/. Watchdog
drivers, like RTC drivers, export a standard device interface to user land, so conforming applications are
rendered independent of the internals of watchdog hardware. This API is specified in
Documentation/watchdog/watchdog-api.txt in the kernel source tree. Programs that desire the services of a



watchdog operate on /dev/watchdog, a device node having a misc minor number of 130.

Listing 5.9 implements a device driver for a fictitious watchdog module built in to an embedded controller. The
example watchdog contains two main registers as shown in Table 5.2: a service register

(WD_SERVI CE_REG STER) and a control register (WD_CONTROL_REG STER). To pet the watchdog, the driver writes
a specific sequence (0xABCD in this case) to the service register. To program watchdog timeout, the driver
writes to specified bit positions in the control register.

Table 5.2. Register Layout on the Watchdog Module

Register Name Description

WD_SERVI CE_REQ STER Write a specific sequence to this register to pet the
watchdog.

WD_CONTROL_REQ STER Write the watchdog timeout to this register.

Strobing the watchdog is usually done from user space because the goal of having a watchdog is to detect and
respond to both application and kernel hangs. A critical application[®] such as the graphics engine in Listing 5.10
opens the watchdog driver in Listing 5.9 and periodically writes to it. If no write occurs within the watchdog
timeout due to an application hang or a kernel crash, the watchdog triggers a system reset. In the case of
Listing 5.10, the watchdog will reboot the system if

[51 If you need to monitor the health of several applications, you may implement a multiplexer in the watchdog device driver. If any one of the
processes that open the driver becomes unresponsive, the watchdog attempts to self-correct the system.

¢ The application hangs inside pr ocess_gr aphi cs()
¢ The kernel, and consequently the application, dies

The watchdog starts ticking when an application opens /dev/watchdog. Closing this device node stops the
watchdog unless you set CONFI G_ WATCHDOG_NOWAYQOUT during kernel configuration. Setting this option helps you
tide over the possibility that the watchdog monitoring process (such as Listing 5.10) gets killed by a signal while
the system continues running.

Listing 5.9. An Example Watchdog Driver

Code View:
#i ncl ude <l i nux/ m scdevi ce. h>
#i ncl ude <l i nux/wat chdog. h>

#defi ne DEFAULT_WATCHDOG Tl MEQUT 10 /* 10-second tinmeout */

#define TI MEOUT_SH FT 5 /* To get to the tinmeout field
in WO_CONTROL_REGQ STER */
#defi ne WENABLE_SHI FT 3 /* To get to the

wat chdog-enabl e field in
WD_CONTROL_REG STER */

/* Msc structure */
static struct mscdevice my_wdt_dev = {
.mnor = WATCHDOG M NOR, /* defined as 130 in
i ncl ude/ | i nux/ m scdevi ce. h*/




. hame "wat chdog", /* | dev/ wat chdog */
.fops = &wy_wdt _dog /* Watchdog driver entry points */
b

/* Driver methods */

struct file_operations ny_wdt_dog = {
.owner = THI S_MODULE,

.open = ny_wdt _open,

.rel ease = my_wdt _cl ose,

.wite = ny_wdt_wite,

.ioctl = ny_wdt _ioctl

}
/* Module Initialization */
static int __init
my_wdt _init(void)
{
[* ... %]
m sc_register(&my_wdt _dev);
[* ... %
}

/* Open wat chdog */

static void

my_wdt _open(struct inode *inode, struct file *file)

{
/* Set the tinmeout and enabl e the watchdog */
WD _CONTROL_REQ STER | = DEFAULT_WATCHDOG Tl MEQUT << TI MEOUT_SHI FT;
WD _CONTROL_REQ STER | = 1 << WENABLE_SH FT;

}

/* Cl ose wat chdog */
static int
ny_wdt _cl ose(struct inode *inode, struct file *file)
{
/* 1 f CONFI G_WATCHDOG_NOWAYQUT i s chosen during kernel
configuration, do not disable the watchdog even if the
application desires to close it */
#i f ndef CONFI G_WATCHDOG_NOWAYQUT
/* Di sabl e wat chdog */
WD _CONTROL_REG STER &= ~(1 << WENABLE_SHI FT);
#endi f
return 0;

}

/* Pet the dog */
static ssize_t
my_wdt_wite(struct file *file, const char *data,
size_ t len, loff_t *ppose)
{
/* Pet the dog by witing a specified sequence of bytes to the
wat chdog service register */
WD SERVI CE_REG STER = 0xABCD;

}

/* loctl method. Look at Docunentati on/wat chdog/ wat chdog- api . t xt
for the full list of ioctl commands. This is standard across
wat chdog drivers, so conform ng applications are rendered
har dwar e-i ndependent */

static int




my_wdt _ioctl (struct inode *inode, struct file *file,
unsigned int cnd, unsigned |ong arQg)
{
[* o0 *]
switch (crmd) {
case WDI OC_KEEPALI VE:
/* Wite to the watchdog. Applications can invoke
this ioctl instead of witing to the device */
WD_SERVI CE_REG STER = 0xABCD;
br eak;
case WDI OC_SETTI MEQUT:
copy_fromuser (& imeout, (int *)arg, sizeof(int));

/* Set the tineout that defines unresponsiveness by
witing to the watchdog control register */
WD_CONTROL_REG STER = tineout << TIMEQUT_BITS;
br eak;
case WDI OC_GETTI MEQUT:
/* Get the currently set tineout fromthe watchdog */
[* o0 %]
br eak;
defaul t:
return —ENOTTY;

}

/* Module Exit */
static void __exit
ny_wdt _exi t (voi d)

{
1* .0
m sc_der egi st er (&y_wdt _dev);
1* .0 %

}

modul e_init (my_wdt _init);
nmodul e_exi t (my_wdt _exit);

Listing 5.10. A Watchdog User



#i ncl ude <fcntl . h>
#i ncl ude <asnf types. h>
#i ncl ude <l i nux/wat chdog. h>

i nt
mai n()
{

int new_tineout;
int wid = open("/dev/watchdog”, O WRONLY);

/* Set the watchdog tinmeout to 20 seconds */
new timeout = 20;
ioctl(fd, WDl OC_SETTI MEQUT, &new_ti neout);

while (1) {
/* Graphics processing */
process_graphics();
/* Pet the watchdog */
ioctl(fd, WDI OC_KEEPALI VE, 0);
/* O instead do: wite(wfd, "\0", 1); */
fsync(wfd);

External Watchdogs

To ensure that the system attempts to recover even in the face of processor failures, some
regulatory bodies stipulate the use of an external watchdog chip, even if the main processor has a
sophisticated built-in watchdog module such as the one in our example. Because of this
requirement, embedded devices sometimes use an inexpensive no-frill watchdog chip (such as
MAX6730 from Maxim) that is based on simple hard-wired logic rather than a register interface.
The watchdog asserts a reset pin if no voltage pulse is detected on an input pin within a fixed
reset timeout. The reset pin is connected to the reset logic of the processor, and the input pin is
wired to a processor GPIO port. All that software has to do to prevent reset is to periodically pulse
the watchdog's input pin within the chip's reset timeout. If you are writing a driver for such a
device, the i octl () method is not relevant. The driver's wri t e() method pulses the watchdog's
input pin whenever application software writes to the associated device node. To aid
manufacturing and field diagnostics, the watchdog is wired such that it can be disabled by wiggling
a processor GPIO pin.

Such chips usually allow a large initial timeout to account for boot time, followed by shorter reset
timeouts.

For platforms that do not support a hardware watchdog module, the kernel implements a software watchdog,
also called a softdog. The softdog driver, drivers/char/watchdog/softdog.c, is a pseudo misc driver because it
does not operate on real hardware. The softdog driver has to perform two tasks that a watchdog driver doesn't
have to do, which the latter accomplishes in hardware:

¢ Implement a timeout mechanism



¢ Initiate a soft reboot if the system isn't healthy

This is done by delaying the execution of a timer handler whenever an application writes to the softdog. If no
write occurs to the softdog within a timeout, the timer handler fires and reboots the system.

A related support in 2.6 kernels is the sensing of soft lockups, which are instances when scheduling does not
occur for 10 or more seconds. A kernel thread watchdog/N, where N is the CPU number, touches a per-CPU
timestamp every second. If the thread doesn’'t touch the timestamp for more than 10 seconds, the system is
deemed to have locked up. Soft lockup detection (implemented in kernel/softlockup.c) will aid us while
debugging a kernel crash in the section "Kdump" in Chapter 21, "Debugging Device Drivers."

There are several more misc drivers in the kernel. The Qtronix infrared keyboard driver, drivers/char/qtronix.c,
is another example of a char driver that has a misc form factor. Do a grep on ni sc_regi ster() in the
drivers/char/ directory to find other misc device drivers present in the kernel.



Character Caveats

Driver methods, and, hence, the associated system calls issued by user applications, may fail or partially
succeed. Your application has to factor this in to avoid unpleasant surprises. Let's look at some common pitfalls:

e An open() call may fail for several reasons. Some char drivers support only a single user at a time, so
they fail with - EBUSY if an application attempts to open a device that is already in use. If a printer is out of
paper, the driver fails with - ENCSPC if you issue a device open() .

e A successful read() or wite() can return anything between 1 byte and the number of bytes requested,
so your application needs sufficient logic to handle this.

e Asel ect() call returns success even if a single byte of data is ready to be read or written.

e Some char devices such as mice and touch screens are input-only, so their drivers will not support the
write method family (wite()/aio_wite()/fsync()). Other devices such as printers are output-only,
and their drivers will not support the read method family (read()/ai o_read()). Also, many char driver
methods are optional, so all methods will not be present in all drivers. When a method is absent, the
corresponding system call fails.



Looking at the Sources

Char drivers do not exclusively live in the drivers/char/ directory. Here are some examples of "super" char
drivers that merit special treatment and directories:

Serial drivers are char drivers that manage your computer's serial port. However, they are much more
than simple char drivers and reside separately in the drivers/serial/ directory. The next chapter discusses
serial drivers.

Input drivers are responsible for devices such as keyboards, mice, and joysticks. They live in a separate
source directory, drivers/input/ and, hence, get a distinct chapter, Chapter 7.

Frame buffers (/dev/fb/*) offer access to video memory, the way /dev/mem exports access to system
memory. Chapter 12, "Video Drivers," looks at frame buffer drivers.

Some device classes support a minority of hardware possessing a char interface. For example, SCSI
devices are generally block devices, but a SCSI tape is a char device.

Some subsystems export additional char interfaces that present a raw device model to user space. The
MTD subsystem is generally used for emulating a disk on top of diverse types of flash memory, but some
applications might be better served if they are provided with a raw view of the underlying flash memory.
This is done by the MTD char driver, drivers/mtd/mtdchar.c, which is discussed in Chapter 17, "Memory
Technology Devices."

Certain kernel layers provide hooks for implementing user-space device drivers by exporting suitable char
interfaces. Applications can directly access the innards of the device via these interfaces. One example is
the generic SCSI driver drivers/scsi/sg.c used to implement user space device drivers for SCSI scanners
and CD drives. Another example is the 12C device interface, i2c-dev. Such char interfaces are explained in
Chapter 19.

Meanwhile, runa grep -r onregister_chrdev in the drivers/ directory to get an idea of the popularity of char
drivers in the kernel.

Table 5.3 contains a summary of the main data structures used in this chapter and the location of their
definitions in the source tree. Table 5.4 lists the main kernel programming interfaces that you used in this
chapter along with the location of their definitions.

Table 5.3. Summary of Data Structures

Data Structure Location Description
cdev include/linux/cdev.h Kernel abstraction of a char device
file_operations include/linux/fs.h Char driver methods

dev_t include/linux/types.h Device major/minor numbers



Data Structure

Location

Description

pol | _table

par devi ce

rtc_class_ops

m scdevi ce

Kernel Interface

include/linux/poll.h

include/linux/parport.h

include/linux/rtc.h

A table of wait queues owned by drivers

that are being polled for data

Kernel abstraction of a parallel port
device

Communication interface between top

layer and bottom layer RTC drivers

Location

include/linux/miscdevice.h Representation of a misc device

Table 5.4. Summary of Kernel Programming Interfaces

Description

al l oc_chrdev_region()

unr egi st er _chrdev_regi on()

cdev_init()

cdev_add()
cdev_del ()

cont ai ner _of ()

copy_from user ()

copy_to_user ()

i kely()
unli kel y()

request _region()

rel ease_region()

in[blwI|sn|sl]()
out[bjw I]sn|sl]()

pol | _wait ()

fasync_hel per ()

fs/char_dev.c

fs/char_dev.c

fs/char_dev.c

fs/char_dev.c
fs/char_dev.c

include/linux/kernel.h

arch/x86/lib/usercopy_32.c

(For i386)

arch/x86/lib/usercopy_32.c

(For i386)

include/linux/compiler.h

include/linux/ioport.h
kernel/resource.c

include/linux/ioport.h
kernel/resource.c

include/asm-your-arch/io.h

include/linux/poll.h

fs/fcntl.c

Requests dynamic allocation of a device
major number

Reverse of al | oc_chrdev_regi on()

Connects char driver methods with the
associated cdev

Associates a device number with a cdev
Removes a cdev

From a structure member, gets the
address of its containing structure

Copies data from user space to kernel
space

Copies data from kernel space to user
space

Informs GCC about the possibility of
success of the associated conditional
evaluation

Stakes claim to an 1/0 region

Relinquishes claim to an 1/0 region

Family of functions to exchange data
with 1/0 regions

Adds a wait queue to the kernel
pol | _table

Ensures that if a driver issues a
kill _fasync(), a Sl A Ois dispatched to
the owning application



Kernel Interface Location Description

kill _fasync() fs/fentl.c Dispatches a SI A Oto the owning
application

parport _regi ster_device() drivers/parport/share.c Registers a parallel port device with
parport

par port _unregi ster_device() drivers/parport/share.c Unregisters a parallel port device

parport _regi ster_driver() drivers/parport/share.c Registers a parallel port driver with
parport

parport _unregi ster_driver() drivers/parport/share.c Unregisters a parallel port driver

parport_clai mor_bl ock() drivers/parport/share.c Claims a parallel port

parport_wite_data() include/linux/parport.h Writes data to a parallel port

parport_read_data() include/linux/parport.h Reads data from a parallel port

parport _rel ease() drivers/parport/share.c Releases a parallel port

kobj ect _register() lib/kobject.c Registers a kobject and creates
associated files in sysfs

kobj ect _unregi ster() lib/kobject.c Reverse of kobj ect _regi ster ()

rtc_device_register()/ drivers/rtc/class.c Registers/unregisters a bottom-layer

rtc_devi ce_unregister() driver with the RTC subsystem

m sc_register() drivers/char/misc.c Registers a misc driver

m sc_der egi ster() drivers/char/misc.c Unregisters a misc driver
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The serial port is a basic communication channel used by a slew of technologies and applications.
A chip known as the Universal Asynchronous Receiver Transmitter (UART) is commonly used to
implement serial communication. On PC-compatible hardware, the UART is part of the Super 1/0
chipset, as shown in Figure 6.1.

Figure 6.1. Connection diagram of the PC serial port.
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Though RS-232 communication channels are the common type of serial hardware, the kernel's
serial subsystem is architected in a generic manner to serve diverse users. You will touch the
serial subsystem if you

Run a terminal session over an RS-232 serial link

e Connect to the Internet via a dialup, cellular, or software modem

e Interface with devices such as touch controllers, smart cards, Bluetooth chips, or Infrared
dongles, which use a serial transport

e Emulate a serial port using a USB-to-serial converter

e Communicate over an RS-485 link, which is a multidrop variant of RS-232 that has larger
range and better noise immunity

In this chapter, let's find out how the kernel structures the serial subsystem. We will use the
example of a Linux cell phone to learn about low-level UART drivers and the example of a serial
touch controller to discover the implementation details of higher-level line disciplines.




The UART usually found on PCs is National Semiconductor's 16550, or compatible chips from other
vendors, so you will find references to "16550-type UART" in code and documentation. The 8250 chip is
the predecessor of the 16550, so the Linux driver for PC UARTs is named 8250.c.

Layered Architecture

As you just saw, the users of the serial subsystem are many and different. This has motivated kernel developers
to structure a layered serial architecture using the following building blocks:

1. Lowe-level drivers that worry about the internals of the UART or other underlying serial hardware.

2. A tty driver layer that interfaces with the low-level driver. A tty driver insulates higher layers from the
intricacies of the hardware.

3. Line disciplines that "cook™ data exchanged with the tty driver. Line disciplines shape the behavior of the
serial layer and help reuse lower layers to support different technologies.

To help custom driver implementations, the serial subsystem also provides core APIs that factor commonalities
out of these layers.

Figure 6.2 shows the connection between the layers. N_TTY, N_| RDA, and N_PPP are drop-in line disciplines that

mold the serial subsystem to respectively support terminals, Infrared, and dialup networking. Figure 6.3 maps
the serial subsystem to kernel source files.

Figure 6.2. Connection between the layers in the serial subsystem.
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To illustrate the advantages of a layered serial architecture, let's use an example. Assume that you are using a
USB-to-serial adapter to obtain serial capabilities on a laptop that does not have a serial port. One possible
scenario is when you are debugging the kernel on a target embedded device from a host laptop using kgdb
(kgdb is discussed in Chapter 21, "Debugging Device Drivers™), as shown in Figure 6.4.

Figure 6.4. Using a USB-to-serial converter.

Target
Embedded
UART Device

Host Laptop

As shown in Figure 6.3, you first need a suitable USB physical layer driver (the USB counterpart of the UART
driver) on your host laptop. This is present in the kernel USB subsystem, drivers/usb/. Next, you need a tty
driver to sit on top of the USB physical layer. The usbserial driver (drivers/usb/serial/usb-serial.c) is the core
layer that implements a generic tty over USB-serial converters. This driver, in tandem with device-specific tty
methods registered by the converter driver (drivers/usb/serial/keyspan.c if you are using a Keyspan adapter, for
example), constitutes the tty layer. Last, but not the least, you need the N_TTY line discipline for terminal 1/0
processing.



The tty driver insulates the line discipline and higher layers from the internals of USB. In fact, the line discipline
still thinks it's running over a conventional UART. This is so because the tty driver pulls data from USB Request
Blocks or URBs (discussed in Chapter 11, "Universal Serial Bus™) and encapsulates it in the format expected by

the N_TTY line discipline. The layered architecture thus renders the implementation simpler—all blocks from the
line discipline upward can be reused unchanged.

The preceding example uses a technology-specific tty driver and a generic line discipline. The reverse usage is
also common. The Infrared stack, discussed in Chapter 16, "Linux Without Wires," uses a generic tty driver and
a technology-specific line discipline called N_| RDA.

As you might have noticed in Figure 6.2 and Figure 6.3, although UART drivers are char drivers, they do not
directly expose interfaces to kernel system calls like regular char drivers that we saw in the preceding chapter.
Rather, UART drivers (like keyboard drivers discussed in the next chapter) service another kernel layer, the tty
layer. 1/0 system calls start their journey above top-level line disciplines and finally ripple down to UART drivers
through the tty layer.

In the rest of this chapter, let's take a closer look at the different driver components of the serial layer. We start
at the bottom of the serial stack with low-level UART drivers, move on to middle-level tty drivers, and then
proceed to top-level line discipline drivers.
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touch controller to discover the implementation details of higher-level line disciplines.




The UART usually found on PCs is National Semiconductor's 16550, or compatible chips from other
vendors, so you will find references to "16550-type UART" in code and documentation. The 8250 chip is
the predecessor of the 16550, so the Linux driver for PC UARTs is named 8250.c.

Layered Architecture

As you just saw, the users of the serial subsystem are many and different. This has motivated kernel developers
to structure a layered serial architecture using the following building blocks:

1. Lowe-level drivers that worry about the internals of the UART or other underlying serial hardware.

2. A tty driver layer that interfaces with the low-level driver. A tty driver insulates higher layers from the
intricacies of the hardware.

3. Line disciplines that "cook™ data exchanged with the tty driver. Line disciplines shape the behavior of the
serial layer and help reuse lower layers to support different technologies.

To help custom driver implementations, the serial subsystem also provides core APIs that factor commonalities
out of these layers.

Figure 6.2 shows the connection between the layers. N_TTY, N_| RDA, and N_PPP are drop-in line disciplines that
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To illustrate the advantages of a layered serial architecture, let's use an example. Assume that you are using a
USB-to-serial adapter to obtain serial capabilities on a laptop that does not have a serial port. One possible
scenario is when you are debugging the kernel on a target embedded device from a host laptop using kgdb
(kgdb is discussed in Chapter 21, "Debugging Device Drivers™), as shown in Figure 6.4.

Figure 6.4. Using a USB-to-serial converter.
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As shown in Figure 6.3, you first need a suitable USB physical layer driver (the USB counterpart of the UART
driver) on your host laptop. This is present in the kernel USB subsystem, drivers/usb/. Next, you need a tty
driver to sit on top of the USB physical layer. The usbserial driver (drivers/usb/serial/usb-serial.c) is the core
layer that implements a generic tty over USB-serial converters. This driver, in tandem with device-specific tty
methods registered by the converter driver (drivers/usb/serial/keyspan.c if you are using a Keyspan adapter, for
example), constitutes the tty layer. Last, but not the least, you need the N_TTY line discipline for terminal 1/0
processing.



The tty driver insulates the line discipline and higher layers from the internals of USB. In fact, the line discipline
still thinks it's running over a conventional UART. This is so because the tty driver pulls data from USB Request
Blocks or URBs (discussed in Chapter 11, "Universal Serial Bus™) and encapsulates it in the format expected by

the N_TTY line discipline. The layered architecture thus renders the implementation simpler—all blocks from the
line discipline upward can be reused unchanged.

The preceding example uses a technology-specific tty driver and a generic line discipline. The reverse usage is
also common. The Infrared stack, discussed in Chapter 16, "Linux Without Wires," uses a generic tty driver and
a technology-specific line discipline called N_| RDA.

As you might have noticed in Figure 6.2 and Figure 6.3, although UART drivers are char drivers, they do not
directly expose interfaces to kernel system calls like regular char drivers that we saw in the preceding chapter.
Rather, UART drivers (like keyboard drivers discussed in the next chapter) service another kernel layer, the tty
layer. 1/0 system calls start their journey above top-level line disciplines and finally ripple down to UART drivers
through the tty layer.

In the rest of this chapter, let's take a closer look at the different driver components of the serial layer. We start
at the bottom of the serial stack with low-level UART drivers, move on to middle-level tty drivers, and then
proceed to top-level line discipline drivers.



4 )
UART Drivers

UART drivers revolve around three key data structures. All three are defined in include/linux/serial_core.h :

1. The per-UART driver structure, struct uart_driver :

struct uart_driver {

struct nodule *owner; /* NMbdul e that owns this
struct */

const char *driver _nane; /* Name */

const char *dev_nane; /* [ dev node nane
such as ttyS */

[* ... %

i nt maj or ; /* Maj or number */

i nt m nor ; /* M nor nunber */

[* ... %

struct tty_driver *tty driver; [* tty driver */

b

The comments against each field explain the associated semantics. The owner field allows the same
benefits as that discussed in the previous chapter for the fi | e_operati ons structure.

2. struct uart_port . One instance of this structure exists for each port owned by the UART driver:

struct uart_port {

spi nl ock_t | ock; /* port lock */

unsi gned i nt i obase; /* in/out[bw]*/

unsi gned char __iomem *nenbase; /* read/wite[bw]*/

unsi gned i nt irq; /* irqg nunber */

unsi gned i nt uartcl k; /* base uart clock */

unsi gned char fifosize; /* tx fifo size */

unsi gned char x_char; /* xon/ xoff flow
control */

[* o0 *]

I

3. struct uart_ops . This is a superset of entry points that each UART driver has to support and describes
the operations that can be done on physical hardware. The methods in this structure are invoked by the

tty layer:
struct uart_ops {
uint (*tx_enpty)(struct uart_port *); /* I's TX FI FO enmpty? */
void (*set_nctrl)(struct uart_port *,
unsi gned int nctrl); /* Set nobdem control parans */
uint (*get_nctrl)(struct uvart_port *); /* Get npdem control parans */
void (*stop_tx)(struct uart_port *); /* Stop xmssion */
void (*start_tx)(struct uart_port *); /* Start xmission */
[* o0 0*]

void (*shutdown) (struct uart_port *); /* Disable the port */



void (*set_term os)(struct uart_port *,
struct term os *new,
struct termos *old); /* Set terminal interface

par ans */
[* o0 *]
void (*config_port)(struct uart_port *,
int); /* Configure UART port */
[* o0 *]

}s

There are two important steps that a UART driver has to do to tie itself with the kernel:
1.
Register with the serial core by calling

uart_register_driver(struct uart_driver *);

2.

Invoke uart _add_one_port (struct uart_driver * ,struct uart_port *) to register each individual port
that it supports. If your serial hardware is hotplugged, the ports are registered with the core from the entry
point that probes the presence of the device. Look at the CardBus Modem driver in Listing 10.4 in Chapter 10,
"Peripheral Component Interconnect,"” for an example where the serial device is plugged hot. Note that some
drivers use the wrapper registration function seri al 8250_r egi ster_port(struct uart_port *) , which
internally invokes uart _add_one_port() .

These data structures and registration functions constitute the least common denominator present in all UART
drivers. Armed with these structures and routines, let's develop a sample UART driver.

Device Example: Cell Phone

Consider a Linux cell phone built around an embedded System-on-Chip (SoC). The SoC has two built-in UARTS,
but as shown in Figure 6.5 , both of them are used up, one for communicating with a cellular modem, and the
other for interfacing with a Bluetooth chipset. Because there are no free UARTs for debug purposes, the phone
uses two USB-to-serial converter chips, one to provide a debug terminal to a PC host, and the other to obtain a
spare port. USB-to-serial converters, as you saw earlier in this chapter, let you connect serial devices to your PC
via USB. We discuss more on USB-to-serial converters in Chapter 11 .

Figure 6.5. USB_UART ports on a Linux cell phone.
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The serial sides of the two USB-to-serial converter chips are connected to the SoC via a Complex Programmable
Logic Device or CPLD (see the section "CPLD/FPGA " in Chapter 18 , "Embedding Linux'). The CPLD creates two
virtual UARTs (or USB_UART s) by providing a three-register interface to access each USB-to-serial converter, as
shown in Table 6.1 : a status register, a read-data register, and a write-data register. To write a character to a
USB_UART , loop on a bit in the status register that clears when there is space in the chip's internal transmit
first-in first-out (FIFO) memory and then write the byte to the write-data register. To read a character, wait
until a specified bit in the status register shows presence of data in the receive FIFO and then read from the
read-data register.

UU_STATUS_REG STER

Bits to check whether the transmit FIFO is full or whether the receive FIFO is empty
0x0
UU_READ DATA REQ STER
Read a character from the USB_UART
Ox1
UU WRI TE_DATA REG STER
Write a character to the USB_UART
0x2
Table 6.1. Register Layout of the USB_UART

Register Name Description Offset from USB_UART
Memory Base

At the PC end, use the appropriate Linux usbserial driver (for example, drivers/usb/serial/ftdi_sio.c if you are
using an FT232AM chip on the cell phone) to create and manage /dev/ttyUSBX device nodes that correspond to
the USB-serial ports. You may run terminal emulators such as minicom over one of these device nodes to obtain
a console or debug terminal from the cell phone. At the cell phone end, we have to implement a UART driver for
the USB_UART s. This driver creates and manages /dev/ttyUUX nodes that are responsible for communication at
the device side of the link.

The cell phone shown in Figure 6.5 can act as an intelligent gateway for Bluetooth devices—to the GSM
network and, hence, to the Internet. The phone can, for example, ferry data from your Bluetooth blood
pressure monitor to your health-care provider's server on the Internet. Or it can alert a doctor if it

detects a problem while communicating with your Bluetooth-enabled heart-rate monitor. The Bluetooth



MP3 player used in Chapter 13 , "Audio Drivers," and the Bluetooth pill dispenser used in Chapter 16 are
also examples of devices that can use the Linux cell phone to get Internet-enabled.

Listing 6.1 implements the USB_UART driver. It's implemented as a platform driver. A platform is a pseudo bus
usually used to tie lightweight devices integrated into SoCs, with the Linux device model. A platform consists of

1. A platform device. The architecture-specific setup code adds the platform device using
pl at f orm devi ce_regi ster () or its simpler version, pl at f orm devi ce_regi ster_sinpl e() . You may
also register multiple platform devices at one shot using pl at f orm add_devi ces() . The
pl at f or m_devi ce structure defined in include/linux/platform_device.h represents a platform device:

struct platformdevice {
const char *name; [/* Device Nane */
u32 id; /* Use this field to register nmultiple
instances of a platformdevice. In
this exanple, the two USB_UARTs
have different 1Ds. */
struct device dev; /* Contains a release() nethod and
platform data */
[* o0 *]
I

2. A platform driver. The platform driver registers itself into the platform using
platformdriver_register() . The pl atform.driver structure, also defined in
include/linux/platform_device.h , represents a platform driver:

struct platformdriver {

int (*probe)(struct platformdevice *); /*Probe nethod*/

int (*renove)(struct platformdevice *);/*Renove net hod*/

[* o0 %]

/* The nane field in the follow ng structure should match
the nanme field in the associ ated pl atformdevice
structure */

struct device_driver driver;

b

See Documentation/driver-model/platform.txt for more on platform devices and drivers. For simplicity, our
sample driver registers both the platform device and the platform driver.

During initialization, the USB_UART driver first registers itself with the serial core using uart _regi ster_dri ver ()
. When this is done, you will find a new line starting with usb_uart in /proc/tty/drivers . Next, the driver
registers two platform devices (one per USB_UART ) using pl at f or m_devi ce_regi ster_sinple() . As
mentioned earlier, platform device registrations are usually done during boot-time board setup. Following this,
the driver registers platform driver entry points (probe() , renove() , suspend() , and resune() ) using
platformdriver_register() . The USB_UART platform driver ties into both the above platform devices and has
a matching name (usb_uart ). After this step, you will see two new directories appearing in sysfs, each
corresponding to a USB_UART port: /sys/devices/platform/usb_uart.0/ and /sys/devices/platform/usb_uart.1/ .

Because the Linux device layer now detects a platform driver matching the name of the registered USB_UART
platform devices, it invokes the probe() entry pointl*] (usb_uart _probe() ) belonging to the platform driver,
once for each USB_UART . The probe entry point adds the associated USB_UART port using uart _add_one_port ()



. This triggers invocation of the confi g_port () entry point (part of the uart _ops structure discussed earlier)
that claims and maps the USB_UART register space. If both USB_UART ports are successfully added, the serial
core emits the following kernel messages:

[1] Such platform devices usually cannot be hotplugged. This invocation semantics of the probe() method is different from what you will learn
in later chapters for hotpluggable devices such as PCMCIA, PCI, and USB, but the similar structure of driver entry points helps the Linux device
model to have a uniform and consistent view of all devices.

ttyUUo at MM O 0xe8000000 (irq
ttyUUl at MM O 0xe9000000 (irq

3) is a USB_UART
4) is a USB_UART

Claiming the IRQ, however, is deferred until an application opens the USB_UART port. The IRQ is freed when the
application closes the USB_UART . Table 6.2 traces the driver's code path for claiming and freeing memory
regions and IRQs.

Module Insert
usb_uart _init()
uart _register_driver()
usb_uart _probe()
uart _add_one_port ()
usb_uart_config_port()
request _nmem regi on()
Module Unload
usb_uart _exit()
usb_unregi ster_driver()
usb_uart _renove()
uart _renove_one_port()
usb_uart_rel ease_port()
rel ease_mem regi on()
Open /dev/ttyUUX
usb_uart_startup()
request _irq()
Close /dev/ttyUUX
usb_uart _shut down()
free_irq()
Table 6.2.

Claiming

and

Freeing

Memory

and IRQ
Resources

In the transmit path, the driver collects egress data from the circular buffer associated with the UART port. Data
is present in port->info->xmt.buf[port->info->xmt.tail] asis evident from the UART driver's
start _tx() entry point, usb_uart_start_tx() .

In the receive path, the driver pushes data collected from the USB_UART to the associated tty driver using
tty_insert_flip_char() andtty_flip_buffer_push() . This is done in the receive interrupt handler,
usb_uart _rxint () . Revisit this routine after reading the next section, "TTY Drivers ."

Listing 6.1 uses comments to explain the purpose of driver entry points and their operation. It leaves some of
the entry points in the uart _ops structure unimplemented to cut out extra detail.



Listing 6.1. USB_UART Driver for the Linux Cell Phone

Code View:

#i ncl ude <l i nux/consol e. h>

#i ncl ude <l inux/pl atformdevice. h>
#i nclude <linux/tty.h>

#include <linux/tty_flip.h>

#i ncl ude <l inux/serial_core. h>

#i ncl ude <l inux/serial.h>

#i ncl ude <asmirg. h>

#i ncl ude <asnfio. h>

#defi ne USB_UART_MAJOR 200 /* You've to get this assigned */
#define USB_UART_M NOR_START 70 /* Start mnor nunbering here */
#defi ne USB_UART_PORTS 2 /* The phone has 2 USB_UARTs */
#defi ne PORT_USB_UART 30 /* UART type. Add this to

include/linux/serial _core.h */

/* Each USB_UART has a 3-byte register set consisting of
UU_STATUS_REQ STER at of fset 0, UU_READ DATA REG STER at
of fset 1, and UU WRI TE_DATA REG STER at offset 2 as shown
in Table 6.1 */
#defi ne USB_UART1_BASE 0xe8000000 /* Menory base for USB_UART1 */
#defi ne USB_UART2_BASE 0xe9000000 /* Menory base for USB_UART2 */
#defi ne USB_UART_REGQ STER_SPACE 0x3

/* Semantics of bits in the status register */

#define USB_UART_TX FULL 0x20 /* TX FIFOis full */

#defi ne USB_UART_RX_EMPTY 0x10 /* TX FIFOis enpty */

#defi ne USB_UART_STATUS OxOF /* Parity/frame/overruns? */
#define USB_UART1 | RQ 3 /* USB_UART1 | RQ */

#define USB_UART2_I RQ 4 /* USB_UART2 | RQ */

#define USB_UART_FI FO_SI ZE 32 /* FIFO size */

#define USB_UART_CLK FREQ 16000000

static struct uart_port usb_uart_port[]; /* Defined | ater on */

/* Wite a character to the USB_UART port */

static void

usb_uart _putc(struct uart_port *port, unsigned char c)
{

/* Wait until there is space in the TX FI FO of the USB_UART.
Sense this by | ooking at the USB_UART_TX FULL bit in the
status register */

while (__raw_readb(port->nmenbase) & USB_UART_TX FULL);

/* Wite the character to the data port*/
__rawwiteb(c, (port->nmenbase+l));

}

/* Read a character fromthe USB_UART */

static unsi gned char

usb_uart _getc(struct uart_port *port)

{
/* Wait until data is available in the RX_FIFO */
while (__raw readb(port->nenbase) & USB_UART_RX_EMPTY);

/* Cbtain the data */



return(__raw_readb(port->menbase+2));

}

/* Obtain USB _UART status */
static unsigned char
usb_uart_status(struct uart_port *port)
{
return(__raw_readb(port->menbase) & USB_UART_STATUS);

}

/*

* Claimthe nenory region attached to USB_UART port. Called

* when the driver adds a USB_UART port via uart_add_one_port().
*/

static int

usb_uart _request_port(struct uart_port *port)

{
if (!request_nemregion(port->mapbase, USB UART_REGQ STER SPACE,
"usb_uart")) {
return - EBUSY;
}
return O;
}

/* Rel ease the nenory region attached to a USB UART port.

* Called when the driver renoves a USB _UART port via

* uart_renove_one_port ().

*/
static void
usb_uart _rel ease_port(struct uart_port *port)
{

rel ease_nemregi on( port->mapbase, USB_UART_REG STER SPACE);
}

/*
* Configure USB _UART. Called when the driver adds a USB_UART port.
*
/
static void
usb_uart _config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFI G TYPE && usb_uart_request_port(port) == 0)

{

}
}

port->type = PORT_USB_UART,

/* Receive interrupt handler */

static irqreturn_t

usb_uart _rxint(int irqg, void *dev_id)

{
struct uart_port *port = (struct uart_port *) dev_id;
struct tty struct *tty = port->info->tty;

unsi gned int status, data;
[* ... %]
do {
[* o0 %]
/* Read data */
data = usb_uart_getc(port);



/* Normal, overrun, parity, frame error? */
status = usb_uart_status(port);
/* Dispatch to the tty layer */
tty_insert_flip_char(tty, data, status);
[* .00
} while (nmore_chars_to_be_read()); /* Mre chars */
[* .00
tty flip_buffer_push(tty);

return | RQ_ HANDLED;
}
/* Call ed when an application opens a USB_UART */
static int
usb_uart_startup(struct uart_port *port)
{
int retval = 0;
[* .00
/* Request |RQ */
if ((retval = request_irqg(port->irq, usb_uart_rxint, O,
"usb_uart", (void *)port))) {
return retval;
}
/* .00
return retval;

}

/* Called when an application closes a USB_UART */
static void
usb_uart _shut down(struct uart_port *port)
{
[* .00
/* Free IRQ */
free_irq(port->irq, port);

/* Disable interrupts by witing to appropriate
regi sters */
[* .00
}

/* Set UART type to USB_UART */
static const char *
usb_uart _type(struct uart_port *port)
{
return port->type == PORT_USB_UART ? "USB_UART" : NULL;
}

/* Start transmitting bytes */

static void

usb_uart_start_tx(struct uart_port *port)

{

while (1) {
/* CGet the data fromthe UART circul ar buffer and
wite it to the USB UART' s WRI TE_DATA regi ster */
usb_uart _putc(port,
port->info->xmt.buf[port->info->xmt.tail]);
/* Adjust the tail of the UART buffer */
port->info->xmt.tail = (port->info->xnmit.tail + 1) &
(UART_XM T_SI ZE - 1);

/* Statistics */



port->i count.tx++;
/* Finish if no nore data available in the UART buffer */

if (uart_circ_

}
1% .0
}

enpty(&port->info->xnmt)) break;

/* The UART operations structure */
static struct uart_ops usb_uart_ops = {

.start_tx =
.startup =
. shut down =
.type =
.config_port =

.request_port =

.rel ease_port =

usb_uart_start _tx, /* Start transmitting */
usb_uart_startup, /* App opens USB_UART */
usb_uart _shut down, /* App cl oses USB_UART */
usb_uart _type, /* Set UART type */

usb_uart _config_port, /* Configure when driver
adds a USB_UART port */

usb_uart _request_port,/* C ai mresources
associated with a
USB_UART port */

usb_uart _rel ease_port,/* Rel ease resources
associated with a
USB_UART port */

#if 0 /* Left uninplenented for the USB_UART */

.tx_enpty
.set_nttrl =
.get_nttrl =
.stop_tx =
.stop_rx =
.enabl e_ns =

.set_termos =
#endi f

b

= usb_uart _tx_enpty, /* Transm tter busy? */
usb_uart_set_nttrl, /* Set nodem control */
usb_uart _get _nttrl, /* Get nodem control
usb_uart _stop_tx, /* Stop transnission */
usb_uart _stop_rx, /* Stop reception */
usb_uart _enabl e_ns, /* Enabl e nodem st at us
signals */

usb _uart_set termos, /* Set term os */

static struct uart_driver usb_uart_reg = {

. owner
.driver_nane
. dev_nane

. maj or

. m nor

.nr

.cons

b

= TH S_MODULE, /* Oaner */

= "usb_uart", /* Driver name */

= "ttyuJ', /* Node nane */

= USB_UART_MAJOR, /* Maj or nunber */

= USB_UART_M NOR_START, /* M nor nunber start */
= USB_UART_PORTS, /* Nunber of UART ports */
= &usb_uart_consol e, /* Pointer to the console

structure. Discussed in Chapter
12, "Video Drivers" */

/* Called when the platformdriver is unregistered */

static int

usb_uart _renmove(struct platformdevice *dev)

{

pl at f orm set _drvdat a(dev, NULL);

/* Rermove the USB_UART port fromthe serial core */

uart _renove_one_|

return O;

}

port (&usb_uart _reg, &usb_uart_port[dev->id]);

/* Suspend power nmanagenent event */

static int

usb_uart _suspend(struct platformdevice *dev, pmnessage_t state)



{

uart _suspend_port (&usb_uart _reg, &usb _uart_port[dev->id]);
return O;

}

/* Resume after a previous suspend */
static int

usb_uart _resune(struct platformdevice *dev)
{

uart _resune_port (&usb_uart_reg, &usb_uart_port[dev->id]);
return O;

}

/* Paranmeters of each supported USB_UART port */
static struct uart_port usb_uart_port[] = {

{
. mapbase = (unsigned int) USB_UART1_BASE,
.iotype = UPI O_VEM /* Menory nmapped */
.irq = USB_UART1_I RQ I* 1RQ */
.uartclk = USB_UART_CLK FREQ /* O ock HZ */
.fifosize = USB_UART_FIFO SI ZE, /* Size of the FIFO */
. ops = &usb_uart _ops, /* UART operations */
.flags = UPF_BOOT_AUTOCONF, /* UART port flag */
.line = 0, /* UART port nunber */
b
{
. mapbase = (unsigned int)USB UART2_BASE,
.iotype = UPIO MEM /* Menory mapped */
.irq = USB_UART2_I RQ /* TRQ */
.uartclk = USB_UART_CLK FREQ /* CLock Hz */
.fifosize = USB_UART_FI FO SI ZE, /* Size of the FIFO */
. ops = &usb_uart _ops, /* UART operations */
.flags = UPF_BOOT_AUTOCONF, /* UART port flag */
.line =1, /* UART port nunber */
}
H
/* Platformdriver probe */
static int __init
usb_uart _probe(struct platformdevice *dev)
{
[* .00

/* Add a USB_UART port. This function also registers this device
with the tty layer and triggers invocation of the config_port()
entry point */

uart _add_one_port (&usb_uart_reg, &usb uart_port[dev->id]);

pl at f orm set _drvdat a(dev, &usb_uart_port[dev->id]);

return O;

}

struct platformdevice *usb _uart_plat_devicel; /* Platformdevice
for USB_UART 1 */

struct platformdevice *usb _uart_plat_device2; /* Platformdevice
for USB_UART 2 */

static struct platformdriver usb_uart_driver = {
.probe = usb_uart_probe, /* Probe nethod */
.remove = _ _exit_p(usb_uart_renove), /* Detach nethod */



.suspend = usb_uart_suspend, /* Power suspend */

.resune = usb_uart_resune, /* Resume after a suspend */
.driver = {
.name = "usb_uart", /* Driver nane */
H
b
/* Driver Initialization */
static int __init
usb_uart _init(void)
{
int retval;
/* Register the USB_UART driver with the serial core */
if ((retval = uart_register_driver(&sb _uart_reg))) {
return retval;
}
/* Register platformdevice for USB UART 1. Usually called
during architecture-specific setup */
usb_uart _pl at _devicel =
pl at form device_register_sinple("usb_uart", 0, NULL, 0);
if (IS ERR(usb_uart_plat_devicel)) {
uart _unregi ster_driver(&usb_uart_reg);
return PTR_ERR(usb_uart _pl at _devicel);
}
/* Register platformdevice for USB_UART 2. Usually called
during architecture-specific setup */
usb_uart_pl at _device2 =
pl at f orm devi ce_regi ster_sinple("usb_uart", 1, NULL, 0);
if (I'S_ERR(usb_uart_plat_device2)) {
uart _unregi ster_driver(&usb_uart_reg);
pl at f orm devi ce_unregi ster (usb_uart _pl at _devi cel);
return PTR_ERR(usb_uart _pl at _device2);
}
/* Announce a matching driver for the platform
devi ces regi stered above */
if ((retval = platformdriver_register(&usb_uart_driver))) {
uart _unregi ster_driver(&usb_uart_reg);
pl at f orm devi ce_unregi ster (usb_uart _pl at _devi cel);
pl at f orm devi ce_unregi ster (usb_uart _pl at _devi ce2);
}
return O;
}

/* Driver Exit */
static void __exit
usb_uart _exit(void)

{
/* The order of unregistration is inportant. Unregistering the
UART driver before the platformdriver will crash the system*/

/* Unregister the platformdriver */
pl atformdriver_unregi ster(&usb_uart _driver);

/* Unregister the platformdevices */
pl at f orm devi ce_unregi ster (usb_uart_pl at _devi cel);



pl at f orm devi ce_unregi ster (usb_uart _pl at _devi ce2);

/* Unregister the USB_UART driver */
uart _unregi ster_driver(&usb_uart_reg);

}

modul e_init(usb_uart_init);
nmodul e_exit (usb_uart_exit);

RS-485

RS-485 is not a standard PC interface like RS-232, but in the embedded space, you may come across computers
that use RS-485 connections to reliably communicate with control systems. RS-485 uses differential signals that
let it exchange data over distances of up to a few thousand feet, unlike RS-232 that has a range of only a few
dozen feet. On the processor side, the RS-485 interface is a UART operating in half-duplex mode. So, before
sending data from the transmit FIFO to the wire, the UART device driver needs to additionally enable the RS-
485 transmitter and disable the receiver, possibly by wiggling associated GPIO pins. To obtain data from the
wire to the receive FIFO, the UART driver has to perform the reverse operation.

You have to enable/disable the RS-485 transmitter/receiver at the right places in the serial layer. If you disable
the transmitter too soon, it might not get sufficient time to drain the last bytes from the transmit FIFO, and this
can result in data truncation. If you disable the transmitter too late, on the other hand, you prevent data
reception for that much time, which might lead to receive data loss.

RS-485 supports multidrop, so the higher-layer protocol must implement a suitable addressing mechanism if

you have multiple devices connected to the bus. RS-485 does not support hardware flow control lines using
Request To Send (RTS) and Clear To Send (CTS).
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TTY Drivers

Let's now take a look at the structures and registration functions that lie at the heart of tty drivers. Three
structures are important for their operation:

1. struct tty_struct defined in include/linux/tty.h. This structure contains all state information associated
with an open tty. It's an enormous structure, but here are some important fields:

struct tty_struct {

int magic; /* Magi c marker */
struct tty_driver *driver; /* Pointer to the tty
driver */
struct tty_ldisc |disc; /* Attached Line
di scipline */
[* ...
struct tty flip_buffer flip; /* Flip Buffer. See

bel ow. */
[* ... %]

wai t_queue_head_t wite_ wait; /* See the section
"Li ne Disciplines" */
wai t _qu